Топливные ячейки. Гайд Horizon: Zero Dawn — расположение топливных элементов

Ни кого уже не удивишь ни солнечными панелями, ни ветряками, которые во всех регионах мира вырабатывают электроэнергию. Но выработка от этих устройств не постоянна и приходится устанавливать резервные источники питания, либо подключаться к сети для получения электроэнергии в период, когда объекты ВИЭ не вырабатывают электроэнергию. Однако существуют установки, разработанные в 19 веке, которые используют «альтернативное» топливо для получения электроэнергии, т.е не сжигают газ или нефтепродукты. Такими установками являются топливные элементы.

ИСТОРИЯ СОЗДАНИЯ

Топливные элементы (ТЭ) или топливные ячейки были открыты еще в 1838-1839 году Уильямом Гроувом (Гроу, Грове), когда он изучал электролиз воды.

Справка: Электролиз воды - процесс разложения воды под действием электрического тока на молекулы водорода и кислорода

Отключив от электролитической ячейки батарею, он с удивлением обнаружил, что электроды начали поглощать выделившийся газ и вырабатывать ток. Открытие процесса электрохимического "холодного" горения водорода стало знаменательным событием в энергетике. В дальнейшем он создал аккумулятор Гроува. В этом устройстве был платиновый электрод, погруженный в азотную кислоту, и цинковый электрод в сульфате цинка. Он генерировал ток в 12 ампер и напряжение 8 вольт. Сам Гроу назвал эту конструкцию «мокрой батарейкой» . Затем он создал аккумулятор, используя два платиновых электрода. Один конец каждого электрода находился в серной кислоте, а другие концы запечатаны в контейнеры с водородом и кислородом. Между электродами был стабильный ток, внутри контейнеров увеличивалось количество воды. Гроу смог разложить и улучшить воду в этом устройстве.

«Аккумулятор Гроу»

(источник: Королевское сообщество Национального музея естественной истории)

Термин «топливный элемент» (англ. «Fuel Cell») появился лишь в 1889 году Л. Мондом и
Ч. Лангером, пытавшимися создать устройство для выработки электричества из воздуха и угольного газа.

КАК ЭТО РАБОТАЕТ?

Топливный элемент — относительно простое устройство . В нем есть два электрода: анод (отрицательный электрод) и катод (положительный электрод). На электродах происходит химическая реакция. Чтобы ее ускорить, поверхность электродов покрывается катализатором. ТЭ оснащены еще одним элементом — мембраной. Превращение химической энергии топлива непосредственно в электричество, происходит благодаря работе именно мембраны. Она отделяет две камеры элемента, в которые подают топливо и окислитель. Мембрана позволяет проходить из одной камеры в другую только протонам, которые получаются в результате расщепления топлива, на электроде, покрытом катализатором (электроны при этом пробегают по внешней цепи). Во второй камере протоны воссоединяются с электронами (и атомами кислорода), образуя воду.

Принцип работы водородного топливного элемента

На химическом уровне процесс превращения энергии топлива в электрическую энергию схож с обычным процессом горения (окисления).

При обычном горении в кислороде протекает окисление органического топлива, и химическая энергия топлива переходит в тепловую энергию. Посмотрим что происходи при окислении водорода кислородом в среде электролита и при наличии электродов.

Подавая водород к электроду, находящемуся в щелочной среде протекает химическая реакция:

2H 2 + 4OH - → 4H 2 O + 4e -

Как видно получим электроны, которые, проходя по внешней цепи, поступают на противоположный электрод, к которому поступает кислород и где проходит реакция:

4e- + O 2 + 2H 2 O → 4OH -

Видно, что результирующая реакция 2H 2 + O 2 → H 2 O - такая же, что и при обычном горении, но в топливном элементе получается электрический ток и частично тепло .

ВИДЫ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Классифицировать ТЭ принято по виду электролита использующемся для протекания реакции:

Отметим, что в топливных элементах в качестве горючего могут также применяться уголь, окись углерода, спирты, гидразин, другие органические вещества, а в качестве окислителей - воздух, перекись водорода, хлор, бром, азотная кислота и т.д.

КПД ТОПЛИВНОГО ЭЛЕМЕНТА

Особенностью топливных элементов является отсутствие жёсткого ограничения на КПД , как у тепловых машин.

Справка: КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами.

Поэтому КПД топливных элементов в теории может быть выше 100%. Многие улыбнулись и подумали «Вечный двигатель изобрели значит». Нет, тут стоит вернуться к школьному курсу химии. В основе топливного элемента лежит преобразование химической энергии в электрическую. Вот тут и возникают чудеса. Определённые химической реакции в процессе протекания могут поглощать теплоту из окружающей среды.

Справка: Эндотермические реакции — химические реакции, сопровождающиеся поглощением теплоты. Для эндотермических реакций изменение энтальпии и внутренней энергии имеют положительные значения (Δ H>0, Δ U>0), таким образом, продукты реакции содержат больше энергии, чем исходные компоненты.

Примером такой реакции может служить окисление водорода, которая и используется в большинстве топливных элементов. Поэтому теоретически КПД может больше 100%. Но сегодня топливные элементы в процессе работы нагреваются и не могут поглощать теплоту из окружающей среды.

Справка: Это ограничение накладывает второй закон термодинамики. Не возможен процесс передачи тепла от «холодного» тела к «горячему».

Плюс ко всему имеются потери, связанные с неравновесными процессами. Такими как: омические потери вследствие удельной проводимости электролита и электродов, активационная и концентрационная поляризация, диффузионные потери. Вследствие этого часть энергии, вырабатываемой в топливных элементах, превращается в тепловую. Поэтому топливные элементы не вечные двигатели и КПД их меньше 100%. Но их КПД больше, чем у остальных машин. Сегодня эффективность топливного элемента достигает 80% .

Справка: В сороковые годы английский инженер Т. Бэкон сконструировал и построил батарею топливных элементов общей мощностью 6 кВт и КПД 80 %, работающую на чистом водороде и кислороде, но отношение мощности к весу батареи оказалось слишком малым - такие элементы были непригодны для практического применения и слишком дорогими (источник: http://www.powerinfo.ru/).

ПРОБЛЕМЫ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Практически все топливные элементы в качестве топлива используют водород, так что возникает логичный вопрос: «Где его взять?»

Кажется, открыли топливный элемент в результате электролиза, вот и можно использовать водород выделившейся в результате электролиза. Но давайте разберем этот процесс подробнее.

Согласно закону Фарадея: количество вещества, которое окисляется на аноде или восстанавливается на катоде, пропорционально количеству электричества, прошедшего через электролит. Значит, чтобы получить больше водорода необходимо потратить больше электроэнергии. Существующие методы электролиза воды проходят с кпд меньше единицы. Затем полученный водород мы используем в ТЭ, где кпд также меньше единицы. Следовательно мы затратим энергии больше, чем сможем выработать.

Конечно, можно использовать водород, получаемый из природного газа. Этот способ получения водорода остается самым дешевым и популярным. В настоящее время около 50 % водорода, производимого во всём мире, получают из природного газа. Но возникает проблема с хранением и транспортировкой водорода. Водород имеет маленькую плотность (один литр водорода весит 0,0846 гр ), поэтому чтобы транспортировать его на дальние расстояния его необходимо сжимать. А это дополнительные энергетические и денежные затраты. Так же не стоит забывать о безопасности.

Впрочем, тут тоже есть решение - в качестве источника водорода можно применять жидкое углеводородное топливо. Например, этиловый или метиловый спирт. Правда, тут уже требуется специальное дополнительное устройство - топливный преобразователь, при высокой температуре (для метанола это будет где-то 240°С) преобразующее спирты в смесь газообразных H 2 и CO 2 . Но в этом случае уже сложнее думать о портативности - такие устройства хорошо применять в качестве стационарных или автомобильных генераторов, а вот для компактной мобильной техники нужно что-нибудь менее громоздкое.

Катализатор

Для повышения протекания реакции в ТЭ поверхность анода обычно катализатором. До не давнего времени в качестве катализатора использовалась платина. Поэтому стоимость топливного элемента была высока. Во-вторых, платина относительно редкий металл. По мнению специалистов, при промышленном производстве топливных элементов разведанные запасы платины закончатся через 15-20 лет. Но ученые всего мира пытаются заменить платину на другие материалы. Кстати некоторые из них достигли неплохих результатов. Так китайские ученые заменили платину на окисел кальция (источник: www.cheburek.net).

ИСПОЛЬЗОВАНИЕ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Впервые топливный элемент в автотехники испытали в 1959 г. Трактор Элис-Чемберз, использовал для работы 1008 аккумуляторов. Топливом являлась смесь газов, в основном пропана и кислорода.

Источник: http://www.planetseed.com/

С середины 60-ых в разгар «космической гонки» топливными элементами заинтересовались создатели космических аппаратов. Работа тысяч ученых и инженеров позволила выйти на новый уровень, и в 1965г. топливные элементы был испытаны в США на космическом корабле "Джемини-5", а в дальнейшем - на кораблях "Аполлон" для полетов на Луну и по программе "Шатл". В СССР топливные элементы разрабатывали в НПО "Квант", тоже для использования в космосе (источник: http://www.powerinfo.ru/).

Так как в топливном элементе конечным продуктом сгорания водорода является вода, то они считаются наиболее чистыми с точки зрения влияния на окружающую среду. Поэтому свою популярность ТЭ стали приобретать на фоне всеобщей заинтересованности в экологии.

Уже в настоящее время производители автомобилей, такие как «Honda», «Ford», «Nissan» и «Mercedes-Benz» создали автомобили работающие на водородных топливных элементах.

Mercedes-Benz - Ener-G-Force, работающий на водороде

При использовании автомобилей на водороде, решается проблема с хранением водорода. Строительство заправок с водородом позволит получить возможность заправки в любом месте. Тем более заправлять автомобиль водородом быстрее, чем заряжать электромобиль на заправке. Но при реализации подобных проектов столкнулись с проблемой как у электромобилей. Люди готовы «пересесть» на автомобиль на водороде, если будет инфраструктура для них. А строительство заправок начнется, если будет достаточное количество потребителей. Поэтому опять пришли к дилемме яйца и курицы.

Широкое применение топливные элементы нашли в мобильных телефонах и ноутбуках. Уже прошло то время когда телефон заряжали раз в неделю. Сейчас телефон заряжается, чуть ли не каждый день, а ноутбук без сети работает 3-4 часа. Поэтому производители мобильной техники решили синтезировать топливный элемент с телефонами и ноутбуками для зарядки и работы. Например, компания «Toshiba» в 2003г. продемонстрировала готовый прототип метанолового топливного элемента. Он дает мощность порядка 100мВт. Одной заправки в 2 кубика концентрированного (99,5%) метанола достаточно на 20 часов работы МРЗ-плеера. Опять же, та же «Toshiba» демонстрировала элемент для питания ноутбуков размером 275x75x40мм, дающий возможность компьютеру работать в течение 5 часов от одной заправки.

Но некоторые производители пошли дальше. Компания «PowerTrekk» выпустила зарядное устройство с одноименным названием. PowerTrekk - первое зарядное водяное устройство в мире. Использовать его очень легко. В PowerTrekk необходимо добавить воды, чтобы обеспечить мгновенную подачу электричества через шнур USB. Данный топливный элемент содержит кремниевый порошок и силицид натрия (NaSi) при смешивании с водой, данное сочетание генерирует водород. Водород смешивается с воздухом в самом топливном элементе, и он преобразует водород в электричество посредством его мембранно-протонного обмена, без вентиляторов или насосов. Купить такое портативное зарядное устройство можно за 149 € (

Admin

Horizon: Zero Dawn | 2017-03-14

В Horizon: Zero Dawn можно найти 5 топливных элементов для выполнение квеста Древний Арсенал , за который дают Ткач Щита — лучший сет брони в игре.

Horizon: Zero Dawn — где найти топливные элементы

Первый элемент питания вы найдете на ранней стадии игры. Вам предстоит отправиться в Руины , которые Элой помнит еще с детства. На карте эта точка отмечена зеленым маркером, к ней вам и необходимо держать путь. Войти в руины можно через небольшую дыру в земле. Ваша задача — спуститься на первый уровень.

Заблудиться в руинах практически невозможно, но будьте предельно внимательны. Иногда придется спускаться по лестнице, находить двери и разбивать сталактиты.

Топливный элемент находится на столе и имеет зеленую иконку.

Второй элемент можно отыскать после прохождения миссии «Сердце Нора» . На ранней стадии выполнения вы найдете дверь с выключателем, используйте его, отоприте дверь и продолжите путь. Поверните направо, а после следуйте к двери, которая находится впереди.

После этого вы найдете голо-замок, открыть который вам не удастся. Слева от него можно увидеть дыру, внутри которой находятся свечи. Двигайтесь в этом направлении и уже скоро вы найдете элемент, лежащий на земле.

Третий элемент можно отыскать в процессе выполнения миссии «Предел Мастера» . Одним из заданий миссии будет забраться на высокое здание. А оказавшись на его вершине, вы получите новое поручение — отыскать информацию в офисе Фаро.

Дойдя до нужного места, не следуйте вперед. Обернитесь и залезьте на стену впереди. Найдя топливный элемент, можно положить его в свой инвентарь и продолжить выполнение задания.

Четвертый топливный элемент

Четвертый элемент можно отыскать в процессе выполнения миссии «Клад смерти» . После того, как вы решите задачу с голо-замками, отправляйтесь на третий этаж, следуйте по лестницам и вскоре вы найдете нужное место. Слева в коридоре будет расположена дверь с голо-замком. Внутри этой комнаты и находится топливный элемент.

Пятый элемент можно отыскать в процессе прохождения миссии «Упавшая гора» . В определенный момент вы окажетесь в огромной пещере, после чего не стоит спускаться в самый низ. Обернитесь и вы увидите перед собой скалу, на которую необходимо забраться. На вершине вы увидите туннель с фиолетовым свечением, зайдите в него и следуйте до самого конца. Ячейка питания будет ждать вас на полке.

Tопливный элемент №1 — Сердце Maтери (зaдaние Утробa Maтери)
Сaмый первый топливный элемент Элой нaйдет еще до выходa в полностью открытый мир. После Инициaции нaшa героиня окaжется в Сердце Maтери, священном месте племени Hорa и обители Maтриaрхов.

Встaв с кровaти, Элой последовaтельно пройдет через несколько комнaт и в одной из них нaткнется нa герметичную дверь, которую нельзя открыть. Посмотрите вокруг — рядом будет вентиляционнaя шaхтa, декорировaннaя горящими свечaми. Вaм тудa.

Пройдя по шaхте, вы окaжетесь позaди зaпертой двери. Посмотрите нa пол рядом со свечaми и нaстенным блоком зaгaдочного нaзнaчения — здесь лежит топливный элемент.

Вaжно: если вы не подберете этот топливный элемент сейчaс, то вторично сможете попaсть в эту локaцию только нa поздних этaпaх игры, после выполнения зaдaния «Сердце Hорa».

Tопливный элемент №2 — Pуины
В этих руинaх Элой уже бывaлa — онa провaлилaсь сюдa еще ребенком. После прохождения Инициaции стоит вспомнить детство и вернуться сюдa еще рaз — зaбрaть второй топливный элемент.

Вход в руины выглядит вот тaк, прыгaйте смело.

Вaм нужен первый уровень руин, прaвaя нижняя облaсть, подсвеченнaя фиолетовым нa кaрте. Здесь есть дверь, которую Элой откроет с помощью своего копья.

Пройдя через дверь, поднимитесь по лестнице и сверните нaпрaво — через эти стaлaктиты Элой не смоглa пролезть в юности, но теперь у нее есть aргумент. Вновь достaвaйте копье и ломaйте стaлaктиты — путь свободен, остaлось взять топливный элемент, лежaщий нa столе.

Tопливный элемент №3 — Предел Maстерa (зaдaние Предел Maстерa)
Oтпрaвляемся нa север. Во время выполнения сюжетного зaдaния Предел Maстерa Элой исследует гигaнтские руины Предтеч. Ha двенaдцaтом уровне руин спрятaн еще один топливный элемент.

Вaм нужно не только подняться нa верхний уровень руин, но и зaлезть еще чуть выше. Поднимaйтесь по уцелевшей чaсти постройки, покa не окaжетесь нa небольшой площaдке, открытой всем ветрaм.

Здесь и лежит третий топливный элемент. Oстaлось спуститься вниз.

Tопливный элемент №4 — Клaд Смерти (зaдaние Клaд Смерти)
Этот топливный элемент тоже спрятaн в северной чaсти кaрты, но он нaмного ближе к землям племени Hорa. Сюдa Элой тоже попaдет во время прохождения сюжетного зaдaния.

Чтобы добрaться до элементa, Элой нужно восстaновить энергоснaбжение герметичной двери, рaсположенной нa третьем уровне локaции.

Для этого нужно решить небольшую головоломку — нa уровень ниже двери есть двa блокa по четыре регуляторa.

Снaчaлa рaзберемся с левым блоком регуляторов. Первый регулятор должен «смотреть» вверх, второй «впрaво», третий «влево», четвертый «вниз».

Переходим к прaвому блоку. Первые двa регуляторa вы не трогaете, третий и четвертый регуляторы должен смотреть «вниз».

Поднимaемся нa один уровень вверх — здесь нaходится последний блок регуляторов. Прaвильный порядок тaков: вверх, вниз, влево, впрaво.

Eсли вы все сделaете прaвильно, то все регуляторы сменят цвет нa бирюзовый, энергоснaбжение восстaновлено. Поднимaйтесь обрaтно к двери и открывaйте ее — вот и очередной топливный элемент.

Tопливный элемент №5 — ГАЙЯ Прaйм (зaдaние Упaвшaя Горa)
Haконец-то, последний топливный элемент — и сновa по сюжетному зaдaнию. Элой отпрaвляется в руины ГАЙЯ Прaйм.

Будьте особенно внимaтельны, когдa доберетесь до третьего уровня. В кaкой-то момент перед Элой окaжется притягaтельнaя пропaсть, в которую можно спуститься нa веревке — вaм тудa не нaдо.

Лучше поверните нaлево и исследуйте скрытую пещерку, в нее можно попaсть, если aккурaтно спуститься по склону горы.

Зaходите внутрь и идите вперед до сaмого концa. В последней комнaте спрaвa будет стеллaж, нa котором лежит последний топливный элемент.

Преимущества топливных элементов/ячеек

Топливный элемент / ячейка – это устройство, которое эффективно вырабатывает постоянный ток и тепло из богатого водородом топлива путем электрохимической реакции.

Топливный элемент подобен батарее в том, что он вырабатывает постоянный ток путем химической реакции. Топливный элемент включает анод, катод и электролит. Однако, в отличие от батарей, топливные элементы/ячейки не могут накапливать электрическую энергию, не разряжаются и не требуют электричества для повторной зарядки. Топливные элементы/ячейки могут постоянно вырабатывать электроэнергию, пока они имеют запас топлива и воздуха.

В отличие от других генераторов электроэнергии, таких как двигатели внутреннего сгорания или турбины, работающие на газе, угле, мазуте и пр., топливные элементы/ячейки не сжигают топливо. Это означает отсутствие шумных роторов высокого давления, громкого шума при выхлопе, вибрации. Топливные элементы/ячейки вырабатывают электричество путем бесшумной электрохимической реакции. Другой особенностью топливных элементов/ячеек является то, что они преобразуют химическую энергию топлива напрямую в электричество, тепло и воду.

Топливные элементы высокоэффективны и не производят большого количества парниковых газов, таких как углекислый газ, метан и оксид азота. Единственным продуктом выброса при работе - являются вода в виде пара и небольшое количество углекислого газа, который вообще не выделяется, если в качестве топлива используется чистый водород. Топливные элементы/ячейки собираются в сборки, а затем в отдельные функциональные модули.

История развития топливных элементов/ячеек

В 1950х и 1960х годах одна из самых ответственных задач для топливных элементов родилась из потребности Национального управления по аэронавтике и исследованиям космического пространства США (NASA) в источниках энергии для длительных космических миссий. Щелочной топливный элемент/ячейка NASA использует в качестве топлива водород и кислород, соединяя эти два химических элемента в электрохимической реакции. На выходе получаются три полезных в космическом полете побочных продукта реакции – электричество для питания космического аппарата, вода для питья и систем охлаждения и тепло для согревания астронавтов.

Открытие топливных элементов относится к началу XIX века. Первое свидетельство об эффекте топливных элементов было получено в 1838 году.

В конце 1930х начинается работа над топливными элементами со щелочным электролитом и к 1939 году построен элемент, использующую никелированные электроды под высоким давлением. В ходе Второй Мировой Войны разрабатываются топливные элементы/ячейки для подлодок британского флота и в 1958 году представлена топливная сборка, состоящая из щелочных топливных элементов/ячеек диаметром чуть более 25 см.

Интерес возрос в 1950-1960е годы, а также в 1980е, когда промышленный мир пережил нехватку нефтяного топлива. В этот же период мировые страны также озаботились проблемой загрязнения воздуха и рассматривали способы экологически чистого получения электроэнергии. В настоящее время технология производства топливных элементов/ячеек переживает этап бурного развития.

Принцип работы топливных элементов/ячеек

Топливные элементы/ячейки вырабатывают электроэнергию и тепло вследствие происходящей электрохимической реакции, используя электролит, катод и анод.


Анод и катод разделяются электролитом, проводящим протоны. После того, как водород поступит на анод, а кислород - на катод, начинается химическая реакция, в результате которой генерируются электрический ток, тепло и вода.

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Ионы водорода (протоны) проводятся через электролит к катоду, в то время как электроны пропускаются электролитом и проходят по внешней электрической цепи, создавая постоянный ток, который может быть использован для питания оборудования. На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном, и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Ниже приведена соответствующая реакция:

Реакция на аноде: 2H 2 => 4H+ + 4e -
Реакция на катоде: O 2 + 4H+ + 4e - => 2H 2 O
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

Типы и разновидность топливных элементов/ячеек

Подобно существованию различных типов двигателей внутреннего сгорания, существуют различные типы топливных элементов – выбор подходящего типа топливного элемента зависит от его применения.

Топливные элементы делятся на высокотемпературные и низкотемпературные. Низкотемпературные топливные элементы требуют в качестве топлива относительно чистый водород. Это часто означает, что требуется обработка топлива для преобразования первичного топлива (такого как природный газ) в чистый водород. Этот процесс потребляет дополнительную энергию и требует специального оборудования. Высокотемпературные топливные элементы не нуждаются в данной дополнительной процедуре, так как они могут осуществлять "внутреннее преобразование" топлива при повышенных температурах, что означает отсутствие необходимости вкладывания денег в водородную инфраструктуру.

Топливные элементы/ячейки на расплаве карбоната (РКТЭ)

Топливные элементы с расплавленным карбонатным электролитом являются высокотемпературными топливными элементами. Высокая рабочая температура позволяет непосредственно использовать природный газ без топливного процессора и топливного газа с низкой теплотворной способностью топлива производственных процессов и из других источников.

Работа РКТЭ отличается от других топливных элементов. Данные элементы используют электролит из смеси расплавленных карбонатных солей. В настоящее время применяется два типа смесей: карбонат лития и карбонат калия или карбонат лития и карбонат натрия. Для расплавки карбонатных солей и достижения высокой степени подвижности ионов в электролите, работа топливных элементов с расплавленным карбонатным электролитом происходит при высоких температурах (650°C). КПД варьируется в пределах 60-80%.

При нагреве до температуры 650°C, соли становятся проводником для ионов карбоната (CO 3 2-). Данные ионы проходят от катода на анод, где происходит объединение с водородом с образованием воды, диоксида углерода и свободных электронов. Данные электроны направляются по внешней электрической цепи обратно на катод, при этом генерируется электрический ток, а в качестве побочного продукта – тепло.

Реакция на аноде: CO 3 2- + H 2 => H 2 O + CO 2 + 2e -
Реакция на катоде: СO 2 + 1/2O 2 + 2e - => CO 3 2-
Общая реакция элемента: H 2 (g) + 1/2O 2 (g) + CO 2 (катод) => H 2 O(g) + CO 2 (анод)

Высокие рабочие температуры топливных элементов с расплавленным карбонатным электролитом имеют определенные преимущества. При высоких температурах, происходит внутренний риформинг природного газа, что устраняет необходимость использования топливного процессора. Помимо этого, к числу преимуществ можно отнести возможность использования стандартных материалов конструкции, таких как листовая нержавеющая сталь и никелевого катализатора на электродах. Побочное тепло может быть использовано для генерации пара высокого давления для различных промышленных и коммерческих целей.

Высокие температуры реакции в электролите также имеют свои преимущества. Применение высоких температур требует значительного времени для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. Данные характеристики позволяют использовать установки на топливных элементах с расплавленным карбонатным электролитом в условиях постоянной мощности. Высокие температуры препятствуют повреждению топливного элемента окисью углерода.

Топливные элементы с расплавленным карбонатным электролитом подходят для использования в больших стационарных установках. Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью 3,0 МВт. Разрабатываются установки с выходной мощностью до 110 МВт.

Топливные элементы/ячейки на основе фосфорной кислоты (ФКТЭ)

Топливные элементы на основе фосфорной (ортофосфорной) кислоты стали первыми топливными элементами для коммерческого использования.

Топливные элементы на основе фосфорной (ортофосфорной) кислоты используют электролит на основе ортофосфорной кислоты (H 3 PO 4) с концентрацией до 100%. Ионная проводимость ортофосфорной кислоты является низкой при низких температурах, по этой причине эти топливные элементы используются при температурах до 150–220°C.

Носителем заряда в топливных элементах данного типа является водород (H+, протон). Схожий процесс происходит в топливных элементах с мембраной обмена протонов, в которых водород, подводимый к аноду, разделяется на протоны и электроны. Протоны проходят по электролиту и объединяются с кислородом, получаемым из воздуха, на катоде с образованием воды. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток. Ниже представлены реакции, в результате которых генерируется электрический ток и тепло.

Реакция на аноде: 2H 2 => 4H + + 4e -
Реакция на катоде: O 2 (g) + 4H + + 4e - => 2 H 2 O
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

КПД топливных элементов на основе фосфорной (ортофосфорной) кислоты составляет более 40% при генерации электрической энергии. При комбинированном производстве тепловой и электрической энергии, общий КПД составляет около 85%. Помимо этого, учитывая рабочие температуры, побочное тепло может быть использовано для нагрева воды и генерации пара атмосферного давления.

Высокая производительность теплоэнергетических установок на топливных элементах на основе фосфорной (ортофосфорной) кислоты при комбинированном производстве тепловой и электрической энергии является одним из преимуществ данного вида топливных элементов. В установках используется окись углерода с концентрацией около 1,5%, что значительно расширяет возможность выбора топлива. Помимо этого, СО 2 не влияет на электролит и работу топливного элемента, данный тип элементов работает с риформированным природным топливом. Простая конструкция, низкая степень летучести электролита и повышенная стабильность также являются преимущества данного типа топливных элементов.

Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью до 500 кВт. Установки на 11 МВт прошли соответствующие испытания. Разрабатываются установки с выходной мощностью до 100 МВт.

Твердооксидные топливные элементы/ячейки (ТОТЭ)

Твердооксидные топливные элементы являются топливными элементами с самой высокой рабочей температурой. Рабочая температура может варьироваться от 600°C до 1000°C, что позволяет использовать различные типы топлива без специальной предварительной обработки. Для работы с такими высокими температурами используемый электролит представляет собой тонкий твердый оксид металла на керамической основе, часто сплав иттрия и циркония, который является проводником ионов кислорода (О 2-).

Твердый электролит обеспечивает герметичный переход газа от одного электрода к другому, в то время как жидкие электролиты расположены в пористой подложке. Носителем заряда в топливных элементах данного типа является ион кислорода (О 2-). На катоде происходит разделение молекул кислорода из воздуха на ион кислорода и четыре электрона. Ионы кислорода проходят по электролиту и объединяются с водородом, при этом образуется четыре свободных электрона. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток и побочное тепло.

Реакция на аноде: 2H 2 + 2O 2- => 2H 2 O + 4e -
Реакция на катоде: O 2 + 4e - => 2O 2-
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

КПД производимой электрической энергии является самым высоким из всех топливных элементов – около 60-70%. Высокие рабочие температуры позволяют осуществлять комбинированное производство тепловой и электрической энергии для генерации пара высокого давления. Комбинирование высокотемпературного топливного элемента с турбиной позволяет создать гибридный топливный элемент для повышения КПД генерирования электрической энергии до 75%.

Твердооксидные топливные элементы работают при очень высоких температурах (600°C–1000°C), в результате чего требуется значительное время для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. При таких высоких рабочих температурах не требуется преобразователь для восстановления водорода из топлива, что позволяет теплоэнергетической установке работать с относительно нечистым топливом, полученным в результате газификации угля или отработанных газов и т.п. Также данный топливный элемент превосходно подходит для работы с высокой мощностью, включая промышленные и крупные центральные электростанции. Промышленно выпускаются модули с выходной электрической мощностью 100 кВт.

Топливные элементы/ячейки с прямым окислением метанола (ПОМТЭ)

Технология использования топливных элементов с прямым окислением метанола переживает период активного развития. Она успешно зарекомендовала себя в области питания мобильных телефонов, ноутбуков, а также для создания переносных источников электроэнергии. на что и нацелено будущее применение данных элементов.

Устройство топливных элементов с прямым окислением метанола схоже с топливных элементах с мембраной обмена протонов (МОПТЭ), т.е. в качестве электролита используется полимер, а в качестве носителя заряда – ион водорода (протон). Однако, жидкий метанол (CH 3 OH) окисляется при наличии воды на аноде с выделением СО 2 , ионов водорода и электронов, которые направляются по внешней электрической цепи, при этом генерируется электрический ток. Ионы водорода проходят по электролиту и вступает в реакцию с кислородом из воздуха и электронами, поступающих с внешней цепи, с образованием воды на аноде.

Реакция на аноде: CH 3 OH + H 2 O => CO 2 + 6H + + 6e -
Реакция на катоде: 3/2O 2 + 6 H + + 6e - => 3H 2 O
Общая реакция элемента: CH 3 OH + 3/2O 2 => CO 2 + 2H 2 O

Достоинством данного типа топливных элементов являются небольшие габариты, благодаря использованию жидкого топлива, и отсутствие необходимости использования преобразователя.

Щелочные топливные элементы/ячейки (ЩТЭ)

Щелочные топливные элементы – одни из самых эффективных элементов, используемых для генерации электричества, эффективность выработки электроэнергии доходит до 70%.

В щелочных топливных элементах используется электролит, то есть водный раствор гидроксида калия, содержащийся в пористой стабилизированной матрице. Концентрация гидроксида калия может меняться в зависимости от рабочей температуры топливного элемента, диапазон которой варьируется от 65°C до 220°C. Носителем заряда в ЩТЭ является гидроксильный ион (ОН -), движущийся от катода к аноду, где он вступает в реакцию с водородом, производя воду и электроны. Вода, полученная на аноде, движется обратно к катоду, снова генерируя там гидроксильные ионы. В результате этого ряда реакций, проходящих в топливном элементе, производится электричество и, как побочный продукт, тепло:

Реакция на аноде: 2H 2 + 4OH - => 4H 2 O + 4e -
Реакция на катоде: O 2 + 2H 2 O + 4e - => 4 OH -
Общая реакция системы: 2H 2 + O 2 => 2H 2 O

Достоинством ЩТЭ является то, что эти топливные элементы - самые дешевые в производстве, поскольку катализатором, который необходим на электродах, может быть любое из веществ, более дешевых чем те, что используются в качестве катализаторов для других топливных элементов. ЩТЭ работают при относительно низкой температуре и являются одними из самых эффективных топливных элементов - такие характеристики могут соответственно способствовать ускорению генерации питания и высокой эффективности топлива.

Одна из характерных особенностей ЩТЭ – высокая чувствительность к CO 2 , который может содержаться в топливе или воздухе. CO 2 вступает в реакцию с электролитом, быстро отравляет его, и сильно снижает эффективность топливного элемента. Поэтому использование ЩТЭ ограничено закрытыми пространствами, такими как космические и подводные аппараты, они должны работать на чистом водороде и кислороде. Более того, такие молекулы, как CO, H 2 O и CH4, которые безопасны для других топливных элементов, а для некоторых из них даже являются топливом, вредны для ЩТЭ.

Полимерные электролитные топливные элементы/ячейки (ПЭТЭ)

В случае полимерных электролитных топливных элементов полимерная мембрана состоит из полимерных волокон с водными областями, в которых существует проводимость ионов воды H 2 O + (протон, красный) присоединяется к молекуле воды). Молекулы воды представляют проблему из-за медленного ионного обмена. Поэтому требуется высокая концентрация воды как в топливе, так и на выпускных электродах, что ограничивает рабочую температуру 100°C.

Твердокислотные топливные элементы/ячейки (ТКТЭ)

В твердокислотных топливных элементах электролит (CsHSO 4) не содержит воды. Рабочая температура поэтому составляет 100-300°C. Вращение окси анионов SO 4 2- позволяет протонам (красный) перемещаться так, как показано на рисунке. Как правило, твердокислотный топливный элемент представляет собой бутерброд, в котором очень тонкий слой твердокислотного компаунда располагается между двумя плотно сжатыми электродами, чтобы обеспечить хороший контакт. При нагреве органический компонент испаряется, выходя через поры в электродах, сохраняя способность многочисленных контактов между топливом (или кислородом на другом конце элементы), электролитом и электродами.

Различные модули топливных элементов. Батарея топливного элемента

  1. Батарея топливных элементов
  2. Остальное оборудование, работающее при высокой температуре (интегрированный парогенератор, камера сгорания, устройство смены теплового баланса)
  3. Теплостойкая изоляция

Модуль топливного элемента

Сравнительный анализ типов и разновидностей топливных элементов

Инновационные энергосберегающие коммунально-бытовые теплоэнергетические установки обычно построены на твердооксидных топливных элементах (ТОТЭ), полимерных электролитных топливных элементах (ПЭТЭ), топливных элементах на фосфорной кислоте (ФКТЭ), топливных элементах с мембраной обмена протонов (МОПТЭ) и щелочных топливных элементах (ЩТЭ). Обычно имеют следующие характеристики:

Наиболее подходящими следует признать твердооксидные топливные элементы (ТОТЭ), которые:

  • работают при более высокой температуре, что уменьшает необходимость в дорогих драгоценных металлах (таких, как платина)
  • могут работать на различных видах углеводородного топлива, в основном на природном газе
  • имеют большее время запуска и потому лучше подходят для длительного действия
  • демонстрируют высокую эффективность выработки электроэнергии (до 70%)
  • из-за высоких рабочих температур установки могут быть скомбинированы с системами обратной теплоотдачи, доводя общую эффективность системы до 85%
  • имеют практически нулевой уровень выбросов, работают бесшумно и предъявляют низкие требованиями к эксплуатации в сравнении с существующими технологиями выработки электроэнергии
Тип топливной элементы Рабочая температура Эффективность выработки электроэнергии Тип топлива Область применения
РКТЭ 550–700°C 50-70% Средние и большие установки
ФКТЭ 100–220°C 35-40% Чистый водород Большие установки
МОПТЭ 30-100°C 35-50% Чистый водород Малые установки
ТОТЭ 450–1000°C 45-70% Большинство видов углеводородного топлива Малые, средние и большие установки
ПОМТЭ 20-90°C 20-30% Метанол Переносные
ЩТЭ 50–200°C 40-70% Чистый водород Космические исследования
ПЭТЭ 30-100°C 35-50% Чистый водород Малые установки

Поскольку малые теплоэнергетические установки могут подключаться к обычной сети подачи газа, топливные элементы не требуют отдельной системы подачи водорода. При использовании малых теплоэнергетических установок на основе твердооксидных топливных ячеек вырабатываемое тепло может интегрироваться в теплообменники для нагрева воды и вентиляционного воздуха, увеличивая общую эффективность системы. Эта инновационная технология наилучшим образом подходит для эффективной выработки электричества без необходимости в дорогой инфраструктуре и сложной интеграции приборов.

Применение топливных элементов/ячеек

Применение топливных элементов/ячеек в системах телекоммуникации

Вследствие быстрого распространения систем беспроводной связи во всем мире, а также роста социально-экономических выгод технологии мобильных телефонов, необходимость надежного и экономичного резервного электропитания приобрела определяющее значение. Убытки электросети на протяжении года вследствие плохих погодных условий, стихийных бедствий или ограниченной мощности сети представляют собой постоянную сложную проблему для операторов сети.

Традиционные телекоммуникационные решения в области резервного электропитания включают батареи (свинцово-кислотный элемент аккумуляторной батареи с клапанным регулированием) для резервного питания в течение непродолжительного времени и дизельные и пропановые генераторы для более продолжительного резервного питания. Батареи являются относительно дешевым источником резервного питания на 1 – 2 часа. Однако батареи не подходят для более продолжительного резервного питания, так как их техническое обслуживание является дорогим, они становятся ненадежными после долгой эксплуатации, чувствительны к температурам и опасны для окружающей среды после утилизации. Дизельные и пропановые генераторы могут обеспечить продолжительное резервное электропитание. Однако генераторы могут быть ненадежными, требуют трудоемкого технического обслуживания, выделяют в атмосферу высокие уровни загрязнений и газов, вызывающих парниковый эффект.

С целью устранения ограничений традиционных решений в области резервного электропитания была разработана инновационная технология экологически чистых топливных ячеек. Топливные ячейки надежны, не производят шума, содержат меньше подвижных деталей, чем генератор, имеют более широкий диапазон рабочих температур, чем батарея: от -40°C до +50°C и, как результат, обеспечивают чрезвычайно высокий уровень энергосбережения. Кроме того, затраты на такую установку на протяжении срока эксплуатации ниже затрат на генератор. Более низкие затраты на топливную ячейку являются результатом всего одного посещения с целью технического обслуживания в год и значительно более высокой производительностью установки. В конце концов, топливная ячейка представляет собой экологически чистое технологическое решение с минимальным воздействием на окружающую среду.

Установки на топливных ячейках обеспечивают резервное электропитание для критически важных инфраструктур сети связи для беспроводной, постоянной и широкополосной связи в системе телекоммуникаций, в диапазоне от 250 Вт до 15 кВт, они предлагают множество непревзойденных инновационных характеристик:

  • НАДЕЖНОСТЬ – малое количество подвижных деталей и отсутствие разрядки в режиме ожидания
  • ЭНЕРГОСБЕРЕЖЕНИЕ
  • ТИШИНА – низкий уровень шумов
  • УСТОЙЧИВОСТЬ – рабочий диапазон от -40°C до +50°C
  • АДАПТИВНОСТЬ – установка на улице и в помещении (контейнер/защитный контейнер)
  • ВЫСОКАЯ МОЩНОСТЬ – до 15 кВт
  • НИЗКАЯ ПОТРЕБНОСТЬ В ТЕХНИЧЕСКОМ ОБСЛУЖИВАНИИ – минимальное ежегодное техническое обслуживание
  • ЭКОНОМИЧНОСТЬ - привлекательная совокупная стоимость владения
  • ЭКОЛОГИЧЕСКИ ЧИСТАЯ ЭНЕРГИЯ – низкий уровень выбросов с минимальным воздействием на окружающую среду

Система все время чувствует напряжение шины постоянного тока и плавно принимает критические нагрузки, если напряжение шины постоянного тока падает ниже заданного значения, определенного пользователем. Система работает на водороде, который поступает в батарею топливных ячеек одним из двух путей – либо из промышленного источника водорода, либо из жидкого топлива из метанола и воды, при помощи встроенной системы риформинга.

Электричество производится батареей топливных элементов в виде постоянного тока. Энергия постоянного тока передается на преобразователь, который преобразует нерегулируемую электроэнергию постоянного тока, исходящую от батареи топливных ячеек, в высококачественную регулируемую электроэнергию постоянного тока для необходимых нагрузок. Установка на топливных ячейках может обеспечивать резервное электропитание на протяжении многих дней, так как продолжительность действия ограничена только имеющимся в запасе количеством водорода или топлива из метанола/воды.

Топливные элементы предлагают высокий уровень энергосбережения, повышенную надежность системы, более предсказуемые эксплуатационные качества в широком спектре климатических условий, а также надежную эксплуатационную долговечность в сравнении с комплектами батарей со свинцово-кислотными элементами с клапанным регулированием промышленного стандарта. Затраты на протяжении срока эксплуатации также более низкие, вследствие значительно меньшей потребности в техническом обслуживании и замене. Топливные ячейки предлагают конечному пользователю экологические преимущества, так как затраты на утилизацию и риски ответственности, связанные со свинцово-кислотными элементами, вызывают растущее беспокойство.

На эксплуатационные характеристики электрических батарей может отрицательно повлиять широкий спектр факторов, таких как уровень зарядки, температура, циклы, срок службы и другие переменные факторы. Предоставляемая энергия будет различной в зависимости от этих факторов, ее нелегко предсказать. Эксплуатационные характеристики топливной ячейки с мембраной обмена протонов (МОПТЯ) относительно не подвержены влиянию этих факторов и могут обеспечивать критически важное электропитание, пока есть топливо. Повышенная предсказуемость является важным преимуществом при переходе на топливные ячейки для критически важных сфер использования резервного электропитания.

Топливные элементы генерируют энергию только при подаче топлива, подобно газотурбинному генератору, но не имеют подвижных деталей в зоне генерирования. Поэтому, в отличие от генератора, они не подвержены быстрому износу и не требуют постоянного технического обслуживания и смазки.

Топливо, используемое для приведения в действие преобразователя топлива с повышенной продолжительностью действия, представляет собой топливную смесь из метанола и воды. Метанол является широкодоступным, производимым в промышленных масштабах топливом, которое в настоящее время имеет множество применений, среди прочего стеклоомыватели, пластиковые бутылки, присадки для двигателя, эмульсионные краски. Метанол легко транспортируется, может смешиваться с водой, обладает хорошей способностью к биоразложению и не содержит серы. Он имеет низкую точку замерзания (-71°C) и не распадается при длительном хранении.

Применение топливных элементов/ячеек в сетях связи

Сети засекреченной связи нуждаются в надежных решениях в области резервного электропитания, которые могут функционировать на протяжении нескольких часов или нескольких дней в чрезвычайных ситуациях, если электросеть перестала быть доступной.

При наличии незначительного числа подвижных деталей, а также отсутствии снижения мощности в режиме ожидания, инновационная технология топливных ячеек предлагает привлекательное решение в сравнении с существующими в настоящий момент системами резервного электропитания.

Самым неопровержимым доводом в пользу применения технологии топливных ячеек в сетях связи является повышенная общая надежность и безопасность. Во время таких происшествий, как отключения электропитания, землетрясения, бури и ураганы, важно, чтобы системы продолжали работать и были обеспечены надежной подачей резервного электропитания на протяжении длительного периода времени, независимо от температуры или срока эксплуатации системы резервного электропитания.

Линейка устройств электропитания на основе топливных ячеек идеально подходит для поддержки сетей засекреченной связи. Благодаря заложенным в конструкцию принципам энергосбережения, они обеспечивают экологически чистое, надежное резервное питание с повышенной продолжительностью действия (до нескольких дней) для использования в диапазоне мощностей от 250 Вт до 15 кВт.

Применение топливных элементов/ячеек в сетях передачи данных

Надежное электропитание для сетей передачи данных, таких как сети высокоскоростной передачи данных и оптико-волоконные магистрали, имеет ключевое значение во всем мире. Информация, передаваемая по таким сетям, содержит критически важные данные для таких учреждений, как банки, авиакомпании или медицинские центры. Отключение электропитания в таких сетях не только представляет опасность для передаваемой информации, но и, как правило, приводит к значительным финансовым потерям. Надежные инновационные установки на топливных ячейках, обеспечивающие резервное электропитание, предоставляют надежность, необходимую для обеспечения непрерывного электропитания.

Установки на топливных ячейках, работающие на жидкой топливной смеси из метанола и воды, обеспечивают надежное резервное электропитание с повышенной продолжительностью действия, вплоть до нескольких дней. Кроме того, эти установки отличаются значительно сниженными требованиями в отношении технического обслуживания в сравнении с генераторами и батареями, необходимо лишь одно посещение с целью технического обслуживания в год.

Типичные характеристики мест применений для использования установок на топливных ячейках в сетях передачи данных:

  • Применения с количествами потребляемой энергии от 100 Вт до 15 кВт
  • Применения с требованиями в отношении автономной работы > 4 часов
  • Повторители в оптико-волоконных системах (иерархия синхронных цифровых систем, высокоскоростной Интернет, голосовая связь по IP-протоколу…)
  • Сетевые узлы высокоскоростной передачи данных
  • Узлы передачи по протоколу WiMAX

Установки на топливных ячейках для резервного электропитания предлагают многочисленные преимущества для критически важных инфраструктур сетей передачи данных в сравнении с традиционными автономными батареями или дизельными генераторами, позволяя повысить возможности использования на месте:

  1. Технология жидкого топлива позволяет решить проблему размещения водорода и обеспечивает практически неограниченную работу резервного электропитания.
  2. Благодаря тихой работе, малой массе, устойчивости к перепадам температур и функционированию практически без вибраций топливные элементы можно устанавливать вне здания, в промышленных помещениях/контейнерах или на крышах.
  3. Приготовления к использованию системы на месте быстры и экономичны, стоимость эксплуатации низкая.
  4. Топливо обладает способностью к биоразложению и представляет собой экологически чистое решение для городской среды.

Применение топливных элементов/ячеек в системах безопасности

Самые тщательно разработанные системы безопасности зданий и системы связи надежны лишь настолько, насколько надежно электропитание, которое поддерживает их работу. В то время как большинство систем включает некоторые типы систем резервного бесперебойного питания для краткосрочных потерь мощности, они не создают условия для более продолжительных перерывов в работе электросети, которые могут иметь место после стихийных бедствий или терактов. Это может стать критически важным вопросом для многих корпоративных и государственных учреждений.

Такие жизненно важные системы, как системы мониторинга и контроля доступа с помощью системы видеонаблюдения (устройства чтения идентификационных карт, устройства для закрытия двери, техника биометрической идентификации и т.д.), системы автоматической пожарной сигнализации и пожаротушения, системы управления лифтами и телекоммуникационные сети, подвержены риску при отсутствии надежного альтернативного источника электропитания питания продолжительного действия.

Дизельные генераторы производят много шума, их тяжело разместить, также хорошо известно о проблемах с их надежностью и техническим обслуживанием. В противоположность этому, установка на топливных ячейках, обеспечивающая резервное электропитание, не производит шума, является надежной, выбросы, выделяемые ей, равны нулю или весьма низки, ее легко установить на крыше или вне здания. Она не разряжается и не теряет мощность в режиме ожидания. Она обеспечивает непрерывную работу критически важных систем, даже после того, как учреждение прекратит работу и здание будет покинуто людьми.

Инновационные установки на топливных ячейках защищают дорогостоящие вложения критически важных сфер применения. Они обеспечивают экологически чистое, надежное резервное питание с повышенной продолжительностью действия (до многих дней) для использования в диапазоне мощностей от 250 Вт до 15 кВт в сочетании с многочисленными непревзойденными характеристиками и, особенно, высоким уровнем энергосбережения.

Установки на топливных ячейках для резервного электропитания предлагают многочисленные преимущества для использования в критически важных сферах применения, таких как системы обеспечения безопасности и управления зданиями, в сравнении с традиционными автономными батареями или дизельными генераторами. Технология жидкого топлива позволяет решить проблему размещения водорода и обеспечивает практически неограниченную работу резервного электропитания.

Применение топливных элементов/ячеек в коммунально-бытовом отоплении и электрогенерации

На твердооксидных топливных ячейках (ТОТЯ) построены надежные, энергетически эффективные и не дающие вредных выбросов теплоэнергетические установки для выработки электроэнергии и тепла из широко доступного природного газа и возобновляемых источников топлива. Эти инновационные установки используется на самых различных рынках, от домашней выработки электричества до поставок электроэнергии в удаленные районы, а также в качестве вспомогательных источников питания.

Применение топливных элементов/ячеек в распределительных сетях

Малые теплоэнергетические установки предназначены для работы в распределенной сети выработки энергии, состоящей из большого числа малых генераторных установок вместо одной централизованной электростанции.


На рисунке ниже указаны потери эффективности выработки электроэнергии при ее выработке на ТЭЦ и передаче в дома через традиционные сети электропередач, используемые на данный момент. Потери эффективности при централизованной выработке включают потери с электростанции, низковольтной и высоковольтной передачи, а также потери при распределении.

Рисунок показывает результаты интеграции малых теплоэнергетических установок: электричество вырабатывается с эффективностью выработки до 60% на месте использования. В дополнение к этому, домохозяйство может использовать тепло, вырабатываемое топливными ячейками, для нагрева воды и помещений, что увеличивает общую эффективность переработки энергии топлива и повышает уровень энергосбережения.

Использование топливных элементов для защиты окружающей среды-утилизация попутного нефтяного газа

Одной из важнейших задач в нефтедобывающей промышленности является утилизация попутного нефтяного газа. Существующие методы утилизации попутного нефтяного газа имеют массу недостатков, основной из них – они экономически невыгодны. Попутный нефтяной газ сжигается, что наносит огромный вред экологии и здоровью людей.

Инновационные теплоэнергетические установки на топливных элементах, использующие попутный нефтяной газ в качестве топлива, открывают путь к радикальному и экономически выгодному решению проблем по утилизации попутного нефтяного газа.

  1. Одно из основных преимуществ установок на топливных элементах заключается в том, что они могут надежно и устойчиво работать на попутном нефтяном газе переменного состава. Благодаря беспламенной химической реакции, лежащей в основе работы топливного элемента, снижение процентного содержания, например метана, вызывает лишь соответствующее уменьшение выходной мощности.
  2. Гибкость по отношению к электрической нагрузке потребителей, перепаду, набросу нагрузки.
  3. Для монтажа и подключения теплоэнергетических установок на топливных ячейках их внедрения не требуются идти на капитальные затраты, т.к. установки легко монтируются на неподготовленные площадки вблизи месторождений, удобны в эксплуатации, надежны и эффективны.
  4. Высокая автоматизация и современный дистанционный контроль не требуют постоянного нахождения персонала на установке.
  5. Простота и техническое совершенство конструкции: отсутствие движущихся частей, трения, систем смазки дает значительные экономические выгоды от эксплуатации установок на топливных элементах.
  6. Потребление воды: отсутствует при температуре окружающей среды до +30 °C и незначительное при более высоких температурах.
  7. Выход воды: отсутствует.
  8. Кроме того, теплоэнергетические установки на топливных элементах не шумят, не вибрируют, не дают вредных выбросов в атмосферу

По ходу прохождения Horizon: Zero Dawn вы могли случайно наткнуться на так называемые "топливные элементы" , которые отображаются в особых предметах инвентаря. Но для чего они нужны и кому их сбывать? На самом деле, сбывать их никому не нужно. Необходимы топливные элементы для того, чтобы активировать вход в древний арсенал, в котором расположена самая лучшая броня в игре. Итак, рассказываем о том, где искать элементы и как попасть в древний арсенал:

Где найти топливные элементы




  • Третий по счету топливный элемент мы сможем найти в задании "Пpeдeл Мастера". Найти предмет можно будет и позже, но раз уж история игры завела нас сюда, то и не грех прихватить ценность именно сейчас. Тем более, что путь к месту, где лежит элемент отнюдь не близкий.

    Так вот, получив задание "Предел Мастера" Элой необходимо отправиться на север карты, к руинам древней цивилизации.

    Большая часть миссии пройдет внутри здания, где нам предстоит бегать по хитрым коридорам и карабкаться к вершине по шахтам лифта. Здесь мы просто движемся по тому пути, который нам предлагает игра ровно до тех пор, пока Элой не выберется наружу. Сюжетно нам нужно будет изучить хитроумное устройство, но с этим мы повременим.

    Лучше обратим внимание на высокий шпиль, на котором виднеются желтые элементы, по которым Элой сможет вскарабкаться.

    Лезем до самого верха, где на небольшой платформе нас будет ждать драгоценный топливный элемент.

    Спуститься вниз придется по веревке, закрепленной на платформе. А дальше можно смело двигаться по сюжету вплоть до задания "Клад Смерти".

  • Последний пятый топливный элемент можно найти опять же в руинах на севере в сюжетной миссии "Упавшая Гора".

    Получив задание отправляемся в руины ГАЙЯ Прайм. Смело движемся в том направлении, куда ведет нас игра до тех пор, пока не доберемся вот до этого места:

    Не вздумайте прыгать с этой балки вниз! Здесь нам нужно повернуться налево. Там мы увидим небольшое углубление в скале, туда-то нам и надо.