За сколько времени окупится энергоэффективный дом.

Как известно, тепловой поток всегда направлен в сторону более низкой температуры. Так, например, тепло обогреваемого в зимний период дома устремляется наружу через ограждающие конструкции (стены, окна, двери, кровлю) и в результате теряется.

Подсчитано, что на обогрев неутеплённых домов старой постройки надо около 220-270 кВтч/мЧод. Согласно современным нормам по теплозащите, расход энергии для вновь построенных домов не должен превышать 54-100 кВТ’Ч/мЧод. Если же учесть, что 10 кВт-ч соответствуют энергии, полученной при сжигании примерно 1 л жидкого котельного топлива, то нетрудно подсчитать, сколько топлива (денег) можно сэкономить, если эффективно утеплить дом.

Заметим, что теплопотери через отдельные элементы дома различны и зависят от теплоизоляционных качеств конструкций и их размеров. Максимум теплопотерь приходится, как правило, на наружные стены - через них уходит (в зависимости от конструкции) до 35-45% тепла.

Значительно меньший процент общей площади наружных ограждений составляют окна. Однако их сопротивление теплопередаче в 2-3 раза меньше, чем у наружных стен. Поэтому на окна приходятся до 20-30% теплопотерь всего дома.

Немалая часть тепла теряется через крышу . Причём в одно-, двухэтажных домах потери значительно выше, чем в многоэтажных, и составляют порядка 30-35% от общих теплопотерь. Около 3-10% тепла уходит через перекрытия. Безусловно, часть тепла утекает из дома через трубы инженерных коммуникаций.

Температурная характеристика неизолированной стены в летний (вверху) и зимний (внизу) периоды свидетельствуют о необходимости теплоизоляции хотя бы только из-за температуры внутренней поверхности стены.

«Мостик холода» образуется, например, на стыке железобетонного перекрытия с облицовочным бетонным поясом и фасадом наружной стены: 1 - наружная стена; 2 - плавающая стяжка; 3 - междуэтажное перекрытие; 4 - «мостик холода».

При наличии «мостика холода» в жилом помещении может образоваться конденсат. При температуре в помещении 20°С один кубометр воздуха может содержать в себе 17,5 г влаги в виде водяного пара. При снижении температуры на внутренней поверхности наружной стены до 0″С в указанном объёме воздуха может содержаться всего лишь 5 г влаги. Остальные 12,5 г влаги конденсируются и оседают на холодной стене.

Конденсат образуется там, где есть «мостики холода», например, в месте прерывания внутренней теплоизоляции поперечной стеной: 1 - наружная стена; 2 - внутренняя теплоизоляция; 3 - угол, где температура снижена до 6-7°С; 4 - поперечная стена; 5 - конденсат; 6 - место, где температура снижена до 17 °С .

Конечно, добиться полного отсутствия утечек тепла в энергоэффективном доме невозможно. Но свести потери к разумному минимуму удаётся. Один из способов - сократить периметр наружных стен. Если же вы не хотите менять архитектуру здания, нужно позаботиться о грамотном утеплении. Поскольку наибольшее количество тепла теряется через стены, о них и поговорим в первую очередь.

Основных вариантов утепления стен, как известно, три: разместить утеплитель на внутренней поверхности стены; упрятать его внутрь ограждающей конструкции; устроить утепление стены снаружи. Каждый из этих способов имеет присущие ему особенности.

Энергетическое состояние дома показывают термографические исследования. Здесь чётко видны утечки тепла.

Внутренняя теплоизоляция стен

Этот способ имеет целый ряд недостатков. Очевидно, что при таком расположении утеплителя уменьшается площадь помещений. Но это - не основная беда. Главное, что при внутреннем утеплении стена находится в зоне отрицательных температур, которая отчасти захватывает и сам утеплитель. Кроме того, нарушается естественная диффузия водяных паров через ограждение, и создаются условия для образования конденсата на границе стены и утеплителя. Повышенная же влажность приводит не только к снижению теплотехнических характеристик, но и к появлению и активному росту грибков, плесени. Ещё один серьёзный недостаток - наружные стены, утеплённые изнутри, утрачивают свои теп-лоаккумулирующие свойства.

Внутреннее утепление. В случае отсутствия пароизоляции на границе слоёв образуется конденсат.

Внутренняя теплоизоляция с применением пенополистирола (стиропора): 1 - комбинированный слой из стиропора и гипсокартонной плиты; 2 - клеевой раствор; 3 - гипсокартонная плита; 4 -стиропор; 5 - кладка; 6 - штукатурка.

Внутренняя теплоизоляция с применением минерально-волокнистых плит. В отличие от стиропора, который сам по себе паронепроницаем, здесь требуется дополнительная изоляция: 1 - гипсокартонная плита; 2 - минерально-волокнистая плита толщиной 80 мм; 3 - паронепроницаемая плёнка; 4 - кладка.

Таким образом , внутренняя теплоизоляция целесообразна только в том случае, если дом имеет уникальное внешнее оформление, которое может быть нарушено при наружном утеплении его стен (например, если речь идет о памятниках архитектуры).

Утепление наружной стены изнутри с использованием металлической несущей конструкции. Между стеной и профилями установлены тонкие звукоизоляционные полосы. В качестве утеплителя использованы минерально-волокнистые плиты толщиной 50 мм.

Есть и другие резоны, по которым вы можете предпочесть внутреннюю теплоизоляцию. Например, утеплить дом изнутри проще, чем снаружи. Эта задача под силу даже дилетанту. Ещё один плюс - помещение с внутренней теплоизоляцией можно быстрее прогреть. Наконец, связанные с внутренним утеплением работы можно проводить постепенно, по отдельным помещениям.

Наружная теплоизоляция стен

Один из передовых способов теплоизоляции - «тёплый фасад» или наружное утепление «мокрого» типа - наиболее универсальный и применяется во многих странах Европы более полувека. Например, только в Германии в течение 1996 г. такие системы были применены на площади более 43 млн. м2!!!

Комбинированная система «мокрого» типа - многослойная конструкция, в основе которой три слоя. Теплоизоляционный слой - плиты из материалов с низким коэффициентом теплопроводности (минеральная вата или пенополи-стирол). Второй слой - особый штукатурно-клеевой состав, армированный щёлочестойкой сеткой. Третий слой - защитно-декоративная штукатурка (минеральная, акриловая, силикатная, силиконовая), которую можно окрашивать специальными красками.

Здесь показана укладка утеплителя между основной и облицовочной кладками с помощью компрессорной установки. В качестве утеплителя используется вулканическая порода, больше известная под названием перлит.

Достоинств у наружной теплоизоляции «мокрого» типа достаточно много . Главное - возможность недорогими средствами обеспечить необходимое по нормам утепление фасада. При этом стены будут тонкими, поскольку им нужно иметь только достаточную несущую способность, а теплопотерь не допустит утеплитель. Кроме того, стены будут лёгкими, а значит, уменьшатся затраты на возведение фундамента - одного из самых дорогостоящих элементов здания. Температура воздуха в помещениях такого энергоэффективного дома распределяется более равномерно, в результате микроклимат становится приятнее. Системы «мокрого» типа также заметно улучшают звукоизолирующие свойства стен.

В качестве наружной теплоизоляции отлично зарекомендовали себя комбинированные системы «мокрого» типа на основе пенополистирольных или минерально-волокнистых плит, покрываемых паропроницаемой штукатуркой со стеклотканью.

Летом «тёплый фасад» уменьшает нагрев ограждающих конструкций под воздействием солнечных лучей и высокой температуры воздуха, поэтому температура внутри помещения не будет резко возрастать.
Чтобы «тёплый фасад» в течение длительного времени сохранял свои эксплуатационные свойства, он должен соответствовать определённым требованиям. Так, например, очень важно, чтобы все слои «тёплого фасада» не только обладали необходимыми показателями по водо-поглощению, паропроницаемости, морозостойкости, тепловому расширению, но и сочетались друг с другом по этим показателям.

Сочетаемость определяется только расчётом системы в целом. Так, необходимо, чтобы в многослойной конструкции каждый последующий слой (изнутри - наружу) пропускал пар лучше, чем предыдущий. Недооценка этого обстоятельства приводит к использованию вместе, к примеру, ми-нераловатного утеплителя с отличной паропроницаемостью и полимерной декоративной штукатурки (тонкой, но плохо пропускающей пар). В итоге - отслаивание финишного слоя. Во избежание подобных ситуаций специалисты не рекомендуют применять дешёвые, но незнакомые материалы, так как это обычно пагубно сказывается на качестве и сроке службы «теплого фасада».

Основой для теплоизоляции «мокрого» типа могут служить железобетон (панели или монолит), кирпичная или каменная кладка, пенобетон, металл, древесина и т.д. Некоторую сложность, по мнению отдельных специалистов, представляют стены из пенобетонных блоков. Они сами по себе очень «тёплые» и притом обладают высокой паропроницаемостью, что в сочетании с системой наружного утепления может обернуться неприятностями: смещением точки росы в толщу блока (вместо плиты утеплителя) или зоны отрицательных температур внутрь стены, выпадением конденсата на границе утеплителя и штукатурного слоя. Всё это снижает долговечность конструкции и даже разрушает её.

В качестве наружной теплоизоляции в зоне фундамента применяют периметральные изоляционные плиты: 1 - стена подвала; 2 - горизонтальная гидроизоляция наружной стены; 3 - грунтовка; 4 - вертикальная гидроизоляция; 5 - периметральная изоляционная плита; 6 - наружный слой.

Чтобы избежать этих проблем, следует тщательно подобрать плотность и толщину пенобетонных блоков, тип и толщину утеплителя, крепёжные элементы и материалы для армированного и защитно-декоративного слоёв.

Вентилируемые фасадные системы

Более 50% новых зданий в Европе имеют вентилируемые фасады. Теплоизоляционный материал в этом случае укладывают в обрешётку, к которой крепят элементы наружной оболочки из шифера, досок, плит и пр.
Особенность этой системы - наличие вентиляционного зазора между слоем теплоизоляции и декоративной отделкой. В летнюю жару такая конструкция препятствует проникновению

тепла через наружную стену в помещение. Зимой облицовочные плиты защищают от ветра, а воздушное пространство в стене работает как дополнительный утеплитель. Положительным моментом является также отсутствие резких перепадов температуры ограждения. Подобная конструкция стен не препятствует выходу влаги - они дышат.

Наружные стены можно утеплить навесными фасадами, например, из фиброцементных плит, гонта или шпунтованных досок. Важно, чтобы между облицовкой и уложенным между рейками обрешётки утеплителем был вентиляционный зазор, необходимый для циркуляции воздуха.

Фасадные плиты защищают старую стену от воздействия дождя. Влага, случайно проникающая через стыки или зазоры крепёжных изделий, не доходит до утеплителя или несущих конструкций, а благодаря достаточной вентиляции высыхает на внутренней поверхности облицовки, не повреждая самой стены.

Нередко в качестве облицовочного материала в навесных фасадных системах используют фиброцементные плиты. Состоят они на 85% из цемента и на 15% из волокон целлюлозы и различных минеральных наполнителей, а изготавливают их путём прессования.

Состав и уникальные технологии производства придают материалу экологичность, пожаробезопасность, низкие влаго- и звукопроницаемость. Материал долговечен - срок его службы составляет около 100-150 лет, а морозоустойчивость - до 300 циклов, что в несколько раз превышает показатели кирпича. Плиты удобны в монтаже и обработке.

Ещё одно преимущество навесной фасадной системы - возможность применения утеплителя слоем до 250 мм. Для этого используют специально разработанные для вентилируемых фасадов гидрофобизированные минераловатные плиты на основе базальтового волокна. Этот утеплитель абсолютно пожаробезопасен, экологичен и обладает хорошей паропроницаемостью.

Смонтировать систему можно достаточно быстро. Работы производят круглый год, так как полностью исключены мокрые процессы, что особенно важно для России с её холодным климатом.

Утепление крыши

Теплоизолировать дом следует со всех сторон, в том числе и сверху. Причём целесообразно утеплять не только перекрытие, но и крышу, даже если чердачное помещение и не планируется делать жилым.

Когда теплоизоляцию укладывают поверх стропил, то крыша будет защищена от температурных колебаний наиболее надёжно. Если это невозможно, утеплитель укладывают между стропилами, а то и под ними. Очень важно правильно защитить утеплитель от продувания и влаги со стороны кровельного покрытия и от пара - со стороны помещения.

Здесь показано устройство крыши с размещением утеплителя между стропилами: 1 - гидроветрозащитная плёнка; 2 - пароизоляционная плёнка.

Существенное влияние на срок службы теплоизоляции оказывают температурно-влажностный режим эксплуатации конструкции, воздействие ветровых, снеговых и прочих механических нагрузок. Кроме того, утеплители должны долго сохранять свои основные функции (в том числе водо- и биостойкость), не выделять в процессе эксплуатации токсичных и неприятно пахнущих веществ и соответствовать требованиям пожарной безопасности.

Как правило, крыши дачных домов бывают скатными. Прочностные требования к теплоизоляционным материалам для скатных крыш не столь жестки, но важно, чтобы материал не проседал под собственным весом, не давал усадку. В противном случае под коньком могут возникать «мостики холода». Этот эффект нередко возникает при использовании стек-ловолокнистых изделий небольшой плотности.

Пенополистирол подходит для утепления скатных крыш лишь отчасти : он горюч, а значит, требует проведения противопожарных мероприятий, включающих антипиреновую пропитку деревянных конструкций, устройство огнезащитных слоёв и т.д.

Наиболее целесообразно применять гидрофобизированные плиты из базальтовых горных пород.
Эти кашированные фольгой или стеклохолстом материалы лучше всего подходят для утепления ненагруженных кровельных конструкций.

Перечисленные меры по утеплению домов надо выполнять с соблюдением важного требования: утепление должно быть сплошным, без просветов, так как любое место прерывания теплоизоляции образует «мостик холода». К тому же в неутеплённых местах вследствие разности температур может образовываться конденсат, который непременно приведёт к разрушению конструкции.

Вспомним физику. Как известно, в воздухе всегда содержится определённое количество водяных паров. Они и обусловливают влажность воздуха, которая тем выше, чем больше влаги содержится в 1 м3 воздуха.

Однако воздух способен насыщаться водой только до определённых пределов. Например, при температуре 20°С в 1 м3 воздуха может содержаться 17,5 г влаги.

При превышении этой величины при той же температуре влага из воздуха начнёт выпадать в виде мелких капель - конденсата. В то же время, чем ниже температура воздуха, тем меньше в нём может быть воды. Например, при температуре 0°С её количество составляет всего 5 г на 1 м3. Таким образом, если воздух, имеющий температуру 20°С, начать охлаждать до 5°С, то 12,5 г влаги выпадет в виде конденсата.

Утепление окон

Тепловой баланс дома в немалой степени зависит от окон.

Современные оконные системы на основе стеклопакетов с эффективным уплотнением швов позволяют значительно уменьшить потери тепла. Однако при столь надёжном утеплении окон воздух в помещениях становится более влажным и насыщенным вредными веществами. В этих условиях остро встает вопрос о вентиляции помещений.

Оснащённый хорошо уплотнёнными окнами энергоэффективный дом оборудуют вентиляционной системой с теплообменником и дополнительным тепловым насосом: А - наружный воздух; В - отработанный воздух; С - воздух, выводимый в атмосферу; D - приточный воздух; 1 - теплообменник; 2 - вентилятор; 3 - тепловой насос.

Современные стеклопакеты обладают очень высокими теплоизоляционными свойствами: 1 - стекло; 2 - газ ксенон; 3 - сушильный реагент; 4 - бутиловое уплотнение; 5 - полисульфидное уплотнение; 6 - алюминиевый дистанционный элемент.

Современные оконные конструкции обеспечивают вентиляцию помещений при закрытом окне.

С недавних пор на рынке появились окна особой конструкции, обеспечивающие постоянный воздухообмен. При этом ни сквозняк, ни уличный шум не ощущаются. В то же время современный рынок предлагает широкий ассортимент вентиляторов и теплообменников, уменьшающих расход энергии за счёт рационального вентилирования помещений.

Окна в энергоэффективном доме имеют ещё одну функцию: получение дополнительного тепла от солнечных лучей.

При использовании высокоизолирующих стекол температура на их внутренней поверхности составляет 17″С, что создаёт в помещении благоприятный микроклимат. При аналогичной температуре за окном поверхностная температура обычных стеклопакетов равна всего лишь 9″С.

Применение энергии солнца в сочетании с внутренним теплом, источником которого являются газовая или электрическая плита, лампы накаливания, тело человека и пр., способствует экономии энергии.

Существенно большей экономии тепла при наличии окон со стеклопа-кетами можно достичь при использовании отопительной системы с электронным регулированием.

Отопительные системы

Какие же узлы системы отопления нужно модернизировать, чтобы сделать дом энергоэффективным?

Для наглядности систему отопления можно разбить на пять составных элементов: теплогенератор (например, отопительный котел), теплорас-пределительный узел (трубопроводы с циркуляционным насосом), приборы для отдачи тепла в помещение (отопительные батареи, «тёплый пол» и пр.), приборы управления и регулирования, дымовая труба.

В настоящее время наиболее эффективными в плане экономии энергии являются низкотемпературные котлы с использованием водяного пара. В отличие от традиционных отопительных котлов, работающих при температуре 70-90°С, низкотемпературные котлы функционируютт в диапазоне температур 40-75°С.

Низкотемпературная отопительная система с использованием водяного пара: 1 - низкотемпературная отопительная батарея; 2 - конденсат; 3 - уходящий газ.

Особенность котлов, использующих водяной пар, состоит в том, что они в сравнении с обычными низкотемпературными котлами, производят больше тепла при меньшем расходе топлива и, следовательно, при меньшем количестве вредных выбросов.

Обычно водяной пар, образующийся при сжигании топлива, уходит вместе с выбрасываемыми в атмосферу газами. В этих же котлах водяной пар проходит через теплообменник, где он отдаёт своё тепло, которое затем возвращается в отопительную систему.

Низкотемпературные котлы могут также обеспечивать дом водой для хозяйственных нужд.

Низкотемпературная система отопления требует применения отопительных приборов, поверхность теплоотдачи которых больше, чем у обычных батарей. Поэтому с этой системой хорошо сочетается «тёплый пол» с его обширной поверхностью.

Тепло для отопления и нагрева хозяйственной воды производят солнечные коллекторы и работающая на дровах печь.

Современная промышленность выпускает множество механических и электронных приборов управления и регулирования, позволяющих оптимально расходовать энергию. Один из них - наружный температурный датчик (обычно на северо-западной стороне дома). Он передаёт данные о температуре на прибор управления, который при необходимости включает горелку, повышая температуру на входе отопительной системы. Температуру отопительных батарей поддерживают термостаты. Эти приборы устанавливают как на отопительном котле (центральный), так и в комнатах.

Схема современной отопительной системы: 1 - погодный датчик; 2 - задаваемая программа работы; 3 - центральный прибор; 4 - термостат; 5 - вентиль термостата; 6 - смеситель с исполнительным электродвигателем; 7 - отопительный насос.

Приборы с программируемым временем снижают температуру в ночное время или даже днем, когда дом пустует (в выходные дни или во время отпуска). Однако резко снижать температуру не следует, иначе потом при её повышении на остывших поверхностях может образоваться конденсат. К тому же нагрев сильно охлаждённого помещения потребует большего расхода энергии.

Таким образом, только правильно утеплив дом и оснастив его техникой, позволяющей экономно расходовать тепло, вы станете не столь зависимыми от цен на энергию. А самое главное - в энергоэффективном доме всегда будут и здоровый микроклимат, и комфорт.

Мировой опыт решения проблемы истощения запасов топлива

В настоящее время человечество столкнулось с необходимостью найти замену углеводородам, запасы которых невозобновляемы и неуклонно снижаются. Такая задача стоит на государственном уровне. Разные страны решают ее по-разному. Начиная с того, что созданы программы по маркировке энергоэффективных бытовых приборов и продуктов. Для этих целей в США Агентство по защите окружающей среды в 1992 году создало программу «Энерджи стар». Логотипы ENERGY STAR® и EnerGuide for Equipment используют для указания энеогозатратности инженерного оборудования (водонагревательного, отопительного, кондиционеров, вентиляции и пр.) и помогают потребителям выбирать наиболее энергоэффективные устройства, а также стимулируют компании производить энергоэффективную продукцию. Совсем недавно агентство разработало стандарт энергоэффективного здания ENERGY STAR® for New Homes «Энерджи стар». Стандарт ENERGY STAR® for New Homes популяризирует энергоэффективный способ работ в сфере домостроения. Это позволяет строить менее энергозатратные (на 30 %) новые здания.

В конце прошлого 20 столетия в США было принято решение о том, что сбережение энергии энергетическими компаниями достигнутое у потребителей, дает энергетическим компаниям 30% средств, которые получены потребителем, вследствие экономии энергии. Причем эти средств зачисляются в счет прибыли энергетической компании. До этого было принято решение, ограничивающее прибыль энергетических компаний, получаемую от поставки энергии сверх плана. Указанные два фактора в совокупности, а также то, что инвестиции в мероприятия по экономии у потребителей для энергетической компании в 3 раза более выгодно чем строительство новых мощностей, привели к тому, что энергетические компании стали инвестировать средства в мероприятия по энергосбережению у потребителей.

Энергокомпании стали проводить деятельность по сбережению энергии у потребителей. Одним из видов такой деятельности стало стимулирование энергосбережения ценами. Энергетические компании устанавливают скидки потребителю за уменьшение мощности оборудования.

В 1997 г. в Канаде комиссия по зданиям (Canadian Commission on Building and Fire Codes) вместе с Национальным исследовательским советом Канады (National Research Council Canada) после консультаций с регионами (по канадским законам, градостроительство и эксплуатация зданий принадлежат к компетенции провинций и территорий) и другими заинтересованными сторонами разработали и национальные энергетические стандарты для зданий - The Model National Energy Code of Canada for Buildings 1997 (MNECB). В этом документе указаны требования к энергосбережению новых строений. Наиболее строгие требования в MNECB установлены для вводимых в эксплуатацию новых зданий на территории этой страны. По мнению канадских властей это позволит к 2011 г. повысить на 25% энергоэффективность новых зданий по сравнению со старыми зданиями.

В Японии после нефтяного кризиса 1973 г. были разработаны и приняты меры по энергосбережению. Это привело к к снижению на 35% энергоемкости ВВП. Однако, вдальнейшем энергопотребление начало увеличиваться в среднем на 3,1% в год. Японское правительство было вынуждено в 1993 г. пересмотреть «Закон об энергосбережении». В настоящее время в Японии министерство международной торговли и промышленности обязано устанавливать, опубликовывать и реализовывать основные политику, направленную на разностороннее стимулирование национального энергоиспользования, а основные энергопользователи обязаны выполнять мероприятия по рационализации энергопользования в соответствии с политикой японского правительства.

В Европе едва ли не первым международным документом, в котором указано о необходимости введения энергоаудита, стала Директива Евросоюза 93/76/ЕС «о ограничении выделений двуокиси углерода путём улучшения энергоэффективности». Одно из нововведений Директивы предусматривало обязательность определения расходов на отопление, кондиционирование, горячее и холодное водоснабжение зданий. Указанная директива стала основой для создания новых норм и правил в области энергоэффективности в странах ЕС. Директива Евросоюза 93/76/ЕС указала правовые основы энергоаудита в Европе.

Сегодня в большинстве стран Европы энергоаудит является обязательным для оформления энергетического паспорта строения. Энергетический паспорт здания это документ, который содержит данные по теплоэффективности здания, данные о фактическом энергопотреблении здания и является подтверждением соответствия здания действующим энергоэффективным нормам.

Несмотря на то, что действует Директива Евросоюза 93/76/ЕС, в настоящее время в странах Европы отсутствует единый подход к сертификации. Национальные правительства разрабатывают национальные требования к сертификации зданий. Однако, уже сейчас сертификация зданий, которые расположены на территории Европейского союза, производится по рейтингу энергетической эффективности зданий. Рейтинг присваивается зданию в зависимости от потребления энергии, вычесленной в кВт.ч/м2.год. В соответствии с этим рейтингом зданию или сооружению выдается сертификат, который свидетельствует о соответствии классу энергоэффективности от A, при потреблении равном или меньше 25 кВт.ч/м2.год, до G, при потреблении, свыше 450 кВт.ч/м2.год.

В соответствии с документом, который получил название «Цели 2020» (2007 г.), энергоэффективность к 2020 г. должна повыситься на 20%, доля возобновляемых источников энергии в ее производстве должна вырасти до 20%, на 30% должен быть уменьшен выброс углекислого газа CO2. Эти цели будут достигаться в том числе за счет появления продукции спецмаркировки, которая указывает на энергетический класс, уровень шума и другие существенные характеристики.

Лидером по разработке и постройке энергоэффективных зданий является Дания. В этой стране экономический рост не сопровождается ростом энергопотребления. В настоящее время дом в Дании не будет принят в эксплуатацию, если на его отопление затрачивается более 70 кВтчас на 1 метр квадратный.

Новые градостроительные нормы в Дании были введены в 2006 г. Согласно новых норм на 25-30% по сравнению с предыдущими нормами возросли требования к энергоэффективности зданий. Нормы, которые будут приняты в 2015 г., будут еще строже. Важной мерой в обеспечении энергосбережения при отоплении является энергетическая маркировка строений и зданий. Энергетическая маркировка применяется и для вновь возводимых, и для существующих зданий. В этой стране принято разделять здания в зависимости от площади на здания общей площадью менее 1500 м2 и более1500 м2. В разных случаях по-разному маркируют здания и применяют разные способы энергосбережения. Как показала датская практика, такая маркировка строений и зданий является действенной мерой, позволяющей ограничивать расход энергии в зданиях.

Положение дел по рассматриваемому вопросу в России

В России в настоящее время, по оценкам экспертов, тратится на отопление 350 кВтчас на 1 метр квадратный. Это в пять раз больше чем в Европе. В том числе поэтому энергоэффективность стала одним из основных направлений исследований, проводимых в «Сколково». Так, специально для того, чтобы осуществлять разработку новых технологий в области энергоэффективности запланировано строительство исследовательского центра датского концерна Danfoss. Danfoss является ведущим мировым производителем оборудования для энергоэффективных зданий. Кроме того, «Сколково» впоследствии станет испытательным полигоном для инновационных технологий, которые здесь разрабатываются. Пример воплощения новых технологий это строительство здания, названного «Гиперкуб».

Немного теории

Энергоэфективность это рациональное расходование энергии.

В домостроении можно выделить следующие первичные факторы растраты энергии:

  • архитектурные решения, вызывающие повышенный расход энергии;
  • отсутствие практики применения альтернативных видов энергии;
  • отсутствие приборов контроля и учета энергии;
  • плохое качество и неграмотный монтаж оконных рам;
  • плохое качество теплоизоляционное стен;
  • морально устаревшие системы вентиляции;
  • значительная протяженность теплотрасс.

Практическим решением, которое позволяет исключить приведенные выше факторы нерационального расхода является энергоэффективный дом. Под энергоэффективным домом принято понимать здание, для которого характерно малое энергопотребление идеальным вариантом является энергонезависимость.

Концепции энергоэффективного дома

В настоящее время разработано несколько концепций энергоэффективного дома.

Концепция «Пассивный дом». Концепция «Пассивный дом» это наиболее ранняя и очень известная концепция энергоэффективного дома. Эта концепция впервые была применена в Германии в конце 20-го века. Сейчас принято относить здание к «пассивным», если оно соответствует стандартам, немецкого института пассивных зданий. «Пассивный» дом – это, в первую очередь, хорошая теплоизоляция. В пассивном доме поддерживается комфортный микроклимат главным образом за счет тепла человеческого тела, энергии солнца, энергии бытовых электроприборов и т.д.

Пассивный дом практически не имет тепловых потерь. Технологии «пассивного дома» проверены в условиях сурового климата скандинавских стран и доказали свою эффективность. Впервые пассивный дом был возведен по экспериментальному проекту в 1991 году в Германии, руководил проектом Вольфранг Файст. В здании проживают четыре семьи, на отопление расходы не превышают 1 л жидкого топлива в год на 1 м2 площади, подлежащей отоплению. В конце первого десятилетия 21 века было введено в эксплуатацию более 7000 пассивных домов. В пассивном доме экономия энергии составляет 90%. Это достигается в первую очередь за счет грамотной теплоизоляции ограждающих стен, увеличения площади остекления южного фасада, а также за счет автоматизированных систем отопления и вентиляции. Также используется солнечная энергия.

Концепция дома с нулевым энергопотреблением. В концепции «Дома с нулевым энергопотреблением» основное внимание уделяется использованию альтернативных видов энергии.

Первый дом с нулевым энергопотреблением был построен в США талантливым инженером Майком Стризки. В доме Майка Стризки летом солнечные батареи вырабатывают на 60% больше энергии, чем это требуется о для нормального проживания. Избыток расходуется на получение водорода из воды. Водород используется для отопления зимой, когда солнечного тепла недостаточно. Майк Стризки не платит денег ни за электричество, ни за газ. Отрицательной стороной концепции дома с нулевым энергопотреблением является высокая стоимость инженерных решений. Поэтому практически, при реализации этой концепции, специалисты сокращают утечки нагретого воздуха, утепляют ограждающие стны, ориентируют окна на юг, разрабатывают энергоэффективные архитектурные решения. Указанные меры в обеспечивают экономить до 60-70% энергии на отопление.

Дом генерирующий энергию. Концепция дома генерирующего энергию являет собой дом, который сам производит электроэнергию для своих нужд. При этом излишки электроэнергии летом продаются энергетической компании, а зимой покупаются обратно. Эффективная теплоизоляция, грамотные архитектурные решения, технологии, позволяющие преобразовывать энергию альтернативных источников в электроэнергию делают такие дома технически реализуемыми.

Энергоэффективный дом Active House в России

Европейская концепция Active House пришла в Россию.

Построенный в России по концепции Active House дом являет собой комплекс инженерных решений, направленных на бережное природопользование и рациональное расходование энергии. Архитектор Ральф Ноулз пришел к выводу, что энергоэффективность здания зависит от отношения площади ограждающих конструкций к объему здания. Чем меньше это отношение, тем в меньшей мере здание подвергается влиянию окружающей среды. Построенный в России Active House полностью соответствует этой закономерности. Главным компонентом Active House – является строительная часть здания. Грамотно рассчитанная и качественно смонтированная теплоизоляция, специальный каркас здания, который устраняет «мостики холода», специальная разработка узлов примыкания, повышенная герметичность здания позволили инженерам сократить теплопотери.

Применение теплового насоса позволило на 72%, в сравнении с электрокотлом, снизить расход электроэнергии. По итогам наблюдения средний сезонный коэффициент преобразования для теплового насоса составляет 3,6 единиц. Эта величина учитывает работу всего встроенного электрического оборудования, в т.ч. трубчатых электронагревателей. Таким образом на 1 кВт*ч электрической энергии, потраченной на работу теплового насоса, вырабатывается 3,6 кВт*ч тепла. Другими словами, для теплового насоса мощностью 9,4 кВт*ч, примерно 6,78 кВт*ч – получено от тепла земли. Другим инновационным решением стало применение солнечных коллекторов. Это решение полностью оправдало себя. Нагрев воды на 70% производится за счет энергии солнца, это позволяет сберегать порядка 30 тыс. рублей в год. Однако из-за особенностей климата в России, эффективность работы таких устройств, как солнечные коллектора зависит от времени года. Зимой значительный снежный покров не позволяет солнечным коллекторам работать на полную мощность, весной система становится эффективной. Так, например, в марте солнечная энергия покрывает 344 кВт из 433 затраченных на нагрев воды, в апреле солнечные коллектора вырабатывают 527 кВт.

Микроклимат, создается в доме при помощи интеллектуальных систем вентиляции, фильтрации воздуха и обогрева. В Active House поддерживается наилучший уровень кислорода и оптимальная влажность. Это стало возможным благодаря применению экологических строительных материалов, а также за счет применения специальных датчиков, реагирующих на рост содержания СО2 в воздухе.

Значительная площадь остекления, достигнута благодаря применению мансардных и фасадных окон. Естественная освещенность в «Active House» в 10 раз превышает уровень требований СНиП. Такое обилие света используется для отопления и комфортно. Многочисленными опытами доказано, что освещение солнечным светом как нельзя лучше влияет на организм человека. Кроме того, освещение солнечным светом экономит электроэнергию. Так как большая часть окон находится на южном фасаде, солнечное тепло не теряется, а используется для обогрева. Дополнительные теплопоступления за счет расположения окон на южной стороне составляют порядка 7000 кВт*ч.

По результатам опытной эксплуатации Active House специалисты сделали вывод о том, что затраты на энергию в Active House в 11 раз ниже, чем в неэнергоэффективном доме. Цифры говорят сами за себя. Фактические расходы в «Active House» составляют около 20 тыс. рублей в год, а расходы в неэнергоэффективном доме составляют – 217 тыс. рублей в год.

Суровые будни российской действительности

Как было сказано, в России энергопотребление здания составляет примерно 350 кВт/(м2*год). Такие цифры для новых зданий, установлены нормами СНиП 23-02-2003 «Тепловая защита зданий». По сравнению с европейским положение дел такое энергопотребление крайне расточительно. Энергоэффективные дома строятся очень редко, в основном для исследований на средства бюджета. Частные застройщики энергоэффективные здания не возводят. Основным фактором, препятствующим внедрению энергоэффективных технологий в строительстве, является повышенная стоимость энергоэффективного дома.

По мнению председателя Комитета по системам инженерно-технического обеспечения зданий и сооружений НОСТРОЙ Ивана Дьякова в настоящее время, в России ни один жилой дом не отвечает требованиям, которые предъявляются энергоэффективным зданиям. Такое важное заявление сделал Иван Дьяков на III Всероссийском конгрессе.

Руководитель аппарата Национального объединения проектировщиков Антон Мороз также считает, что инновации по энергоэффективности и энергосбережению станут внедряться, только после законодательного закрепления обязанности заказчиков применять энергоэффективные технологии в строительстве. Те энергоэффективные решения, которые заложены в проект при проектировании, в процессе возведения здания, чаще всего, не реализуются. Это происходит из-за того, что Заказчик не имеет стимула вкладывать средства в энергоэффективные технологии.

Таким образом, можно сделать вывод о том, что для широкого внедрения энергоэффективных технологий нужна законодательная база и реальные государственные программы, которые бы стимулировали энергоэффективное строительство в нашей стране. Для решения этого вопроса начаты исследования в Сколково, ведется сотрудничество с датской компанией- производителем тепловых насосов «Данфос», бюджетные учреждения обязаны составлять энергетические паспорта зданий. Однако этих мер явно не достаточно. Отставание от Европы составляет годы. Для того чтобы ликвидировать наметившееся основание, необходимо строительство энергоэффективных домов проводить в рамках федеральной программы, с частичным финансированием инновационных технологий государством.

В связи с неуклонным ростом цен на энергоносители и дороговизну подключения газа, всё большее количество застройщиков задумывается о строительстве энергоэффективного дома.

Мы уже рассказывали читателям нашего сайта о том, и какие технологии используются при его строительстве.

А помогут нам в этом пользователи FORUMHOUSE.

Из нашего материал вы узнаете:

  • Какой дом энергоэффективный, а какой – нет.
  • Можно ли отопить энергоэффективный дом только электричеством.
  • Как рассчитать необходимую толщину утеплителя.
  • Окупится ли возведение энергоэффективного дома.

Что такое энергоэффективность

Энергоэффективные дома строят в европейских странах уже давно, но для нашей страны подобное жилище всё ещё является экзотикой.

Многие застройщики с недоверием относятся к строительству таких зданий, считая это неоправданной тратой средств.

Разбираемся, так ли это и выгодно ли строить энергоэффективный дом применительно к климатическим условиям большинства зон России, в том числе Москве.

Энергоэффективный (энергопассивный) дом – это строение, в котором затраты, связанные с потреблением энергии, в среднем на 30% меньше, чем в обычном доме. Энергоэффективность недавнего времени можно было определить по коэффициенту сезонного использования тепловой энергии – Е.

  • Е <= 110 кВт*ч /м2/год – это обычный дом;
  • Е <= 70 кВт*ч /м2/год – энергоэффективный;
  • Е <= 15 кВт*ч /м2/год – пассивный.

При подсчёте коэффициента Е учитывается: отношение площади всех наружных поверхностей ко всей кубатуре дома, толщина слоя теплоизоляции в стенах, кровле и перекрытиях, площадь остекления и количество людей, проживающих в здании.

В Европе для определения класса энергоэффективности принято использовать коэффициент ЕР, который определяет количество электроэнергии, затрачиваемой на отопление, ГВС, свет, вентиляцию и работу бытовых электроприборов.

За отправную точку берётся ЕР = 1 и энергетический класс D, т.е. стандартный. Современная классификация домов, принятая в европейских странах, выглядит так:

  • ЕР <= 0,25 – класс А, пассивный дом;
  • 0.26 < ЕР <= 0,50 – класс В, экономичный;
  • 0,51 < ЕР <= 0,75 – класс С, энергосберегающий дом;
  • 0,75 < ЕР <= 1 – класс D, стандартный;
  • 1,01< ЕР <= 1.25 – класс Е;
  • 1,26 < EP <= 1,50 – класс F;
  • ЕР >1,51 – класс G, самый энергозатратный.

В обычном, недостаточно утеплённом жилье с большими теплопотерями через ограждающие конструкции, большая часть энергии (до 70%) уходит на отопление.

Можно сказать, что владельцы такого жилища отапливают улицу.

Поэтому в европейских странах уже никого не удивить толщиной утеплителя в стенах в 300-400 мм, а сам контур здания делается герметичным.

Необходимый уровень воздухообмена в доме поддерживается при помощи системы вентиляции, а не мифического «дыхания» стен.

Но прежде чем покупать кубометры утеплителя, необходимо понять, когда дополнительное утепление и весь комплекс мер, связанных со строительством энергоэффективного дома экономически оправданы.

Энергоэффективность в цифрах

В нашей стране отопительный период в среднем длится 7-8 месяцев, а климат более суровый, чем в Европе. Из-за этого возникает масса споров о том, выгодно ли строить у нас энергосберегающие дома. Одним из самых частых утверждений противников энергоэффективного строительства является довод о том, что в нашей стране строительство такого здания обходится очень дорого, а затраты на его возведение не окупятся никогда.
Но вот комментарий участника нашего портала.

СТАСНН

Я в 2012 году, в Нижегородской области, построил энергоэффективный дом в 165 кв. м отапливаемой площади с удельным потреблением энергии на отопление 33 кВт*часов на кв. м в год. При среднемесячной температуре воздуха зимой -17°C затраты на отопление электричеством составили 62,58 кВт*ч в сутки.

Следует заострить внимание на технических характеристиках этого дома:

  • толщина утеплителя в полу – 420 мм;
  • толщина утеплителя в стенах – 365 мм;
  • толщина утеплителя в кровле – 500 мм.

Коттедж построен по каркасной технологии. Система отопления дома – электрические низкотемпературные конвекторы общей мощностью 3.5 кВт. Также в доме смонтирована система приточно-вытяжной вентиляции с рекуператором и грунтовым теплообменником подогрева уличного воздуха. Для снабжения горячей водой дополнительно установлены вакуумные солнечные коллекторы.

Общий счет: в месяц на отопление уходит 3.2 тыс. руб. при круглосуточном тарифе 1.7 руб/кВт*ч.

Также интересен опыт форумчанина Александра Федорцова(ник на форуме Скептик ), самостоятельно построившего каркасный дом в 186 кв. м на фундаменте "утепленная шведская плита", с самодельным теплоаккумулятором на 1.7 м3 и с врезанными в него электрическими тэнами.

Скептик

Дом отапливается электричеством через систему водяного тёплого пола. Для отопления используется ночной тариф - 0,97руб./кВт. Ночью теплоноситель в теплоаккумуляторе нагревается до нужной температуры, утром отключается. Кубатура дома - 560м3.

Итог: Зимой, за декабрь, отопление обошлось в 1,5 тыс. рублей. В январе чуть меньше – 2 тыс. рублей.

Как показывает опыт пользователей нашего сайта, строительство энергоэффективного дома по силам любому. Причём, совсем не требуется оснащать его дорогими инженерными системами наподобие рекуператоров воздуха, тепловыми насосами, гелиоколлекторами или солнечными батареями. По мнению форумчанина с ником Toiss, главное – это тёплый замкнутый контур, превосходящий современные СНиПы в три раза, отсутствие мостиков холода, тёплые окна, хорошо утеплённая кровля, фундамент и стены.

Toiss

Чем платить за подключение газа (цена на который постоянно растёт) по 0.5–1 млн.руб., лучше построить энергоэффективный дом площадью до 200 кв.м. При соблюдении технологии строительства и грамотном подходе его возведение экономически оправдано при любых архитектурных и конструктивных решениях.

Энергоэффективность – базовые принципы

Как и чем утеплять дом – один из главных вопросов, возникающих при строительстве.
И думать об этом нужно ещё на стадии проектирования. По мнению Павла Орлова (ник на форуме Smart2305 ), перед экономическим расчётом оправданной толщины утеплителя надо определиться со следующими исходными данными, а именно:

  1. Площадь планируемого дома;
  2. Площадь и тип окон;
  3. Площадь фасадов;
  4. Площадь фундамента и поверхностей цокольного этажа;
  5. Высота потолков, или внутренний объем дома;
  6. Тип вентиляции (естественная, принудительная).

Smart2305

За основу возьмём дом площадью 170 кв.м, с высотой потолков 3 м, площадью остекления 30 кв. м и площадью ограждающих конструкций 400 кв.м.

Основные теплопотери в доме происходят через:

  1. Окна;
  2. Ограждающие конструкции (крышу, стены, фундамент);
  3. Вентиляцию;

При чоздании проекта экономически сбалансированного дома необходимо стремиться к тому, чтобы теплопотери по всем трём категориям были примерно одинаковы, т.е. по 33,3%. В этом случае достигается баланс между дополнительным утеплением и экономической выгодой от такого утепления.

Максимальные теплопотери происходят через окна. Поэтому при строительстве энергоэффективного дома важно «привязать» его к правильному месту на участке (большие окна смотрят на южную сторону) для максимальной степени солнечной инсоляции. Это позволит уменьшить теплопотери при большой площади остекления.

Smart2305

Самое сложное – это уменьшить теплопотери через окна. Разница между различными современными стеклопакетами довольно несущественна и колеблется от 70 до 100 Вт/кв.м.

Если площадь окон равняется 30 кв. м, а уровень теплопотерь – 100 Вт/кв. м, то тепловые потери через окна составят 3000 Вт.

Т.к. уменьшить теплопотери через окна сложнее всего, то при проектировании теплоизоляции ограждающих конструкций дома и системы вентиляции, для сбалансированности, нужно стремиться к тем же значениям – 3000 Вт.

Отсюда общие теплопотери дома составят 3000х3 = 9000 Вт.

Если же пытаться уменьшить только теплопотери ограждающих конструкций, без уменьшения теплопотерь окон, то это приведёт к необоснованному перерасходу средств на утеплитель.

Тепловые потери через ограждающие конструкции равняются сумме потерь через фундамент, стены, крышу.

Smart2305

Нужно стремиться к тому, чтобы уравнять тепловые потери через окна с тепловыми потерями через ограждающие конструкции.

Также необходимо уменьшить теплопотери, связанные с вентилированием помещений. По современным стандартам, необходимо чтобы весь объём воздуха в жилом помещении сменялся 1 раз в час. Дому площадью 170 кв. м с высотой потолков 3 м необходимо 500 м3/час свежего уличного воздуха.

Объём высчитывается умножением площади помещений на высоту потолков.

Если обеспечить приток в дом только холодного воздуха с улицы, то тепловые потери составят 16,7х500=8350 Вт. Это не укладывается в баланс энергоэффективного дома, мы не сможем сказать что такой дом энергосберегающий.

Остаётся два выхода:

  1. Уменьшить воздухообмен, но это не отвечает современным нормативам по необходимому воздухообмену;
  2. Уменьшить тепловые потери при подаче холодного воздуха в дом.

Для подогрева уличного холодного воздуха, поступающего в дом, применяется установка систем принудительной, приточно-вытяжной вентиляции с рекуператором. С помощью этого устройства тепло уходящего на улицу воздуха передаётся входящему потоку. Таким образом повышается эффективность вентиляции.

КПД у рекуператоров составляет 70-80%. Читайте нашу статью о том, как самостоятельно построить недорогой и

Smart2305

Установив в дом (из приведённого выше примера) систему принудительно приточно-вытяжной вентиляции с рекуператором, удастся сократить теплопотери до 2500 Вт. Без системы принудительной, приточно-вытяжной вентиляции с рекуператором невозможно достичь баланса тепловых потерь в доме.

Экономическая целесообразность дополнительного утепления

Основной показатель экономической эффективности дополнительного утепления дома – срок окупаемости системы утепления.

Интересен опыт пользователя с ником Андрей А.А, сравнившего затраты на отопление в режиме ПМЖ утеплённого и неутеплённого дома. Для чистоты эксперимента за исходные условия принимаем следующие данные:

  • отопление магистральным газом;
  • теплопотери через ограждающие конструкции – 300кВт/ч/(кв.м.*год);
  • дом имеет срок службы в 33 года.

Андрей А.А.

Для начала я подсчитал годовые затраты на отопление в режиме ПМЖ без дополнительного утепления. После проведённых мною расчётов затраты на отопление неутеплённого дома в 120 кв.м, при его теплопотерях в 300кВт/ч/(кв.м.*год), составили 32 тыс.руб. в год (при условии, что цена за 1 м3 газа до 2030 составит 7.5 руб).

Теперь подсчитаем, какую сумму можно сэкономить, если как следует утеплить дом.

Андрей А.А.

По моим расчётам, дополнительное утепление снизит теплопотери моего жилья приблизительно в 1,6 раза. Отсюда, при затратах на отопление, равных 1,1 млн. рублей за 33 года (32 т.р. в год х 33 года), после утепления можно на стоимости энергии сэкономить 1,1-1,1/1,6=400тыс. руб.

Чтобы получить 100% экономический эффект от дополнительного утепления, необходимо, чтобы сумма, потраченная на дополнительное утепление, не превысила половину суммы, сэкономленной на стоимости энергии.

Т.е. для данного примера затраты на утепление не должны превысить 200 тыс. рублей.

Через год эксплуатации выяснилось, что после дополнительного утепления теплопотери снизились не в 1.6, а в 2 раза, а вся проделанная работа (т.к. утепление проводилось своими силами, а деньги ушли только на покупку утеплителя) многократно окупилась.

Также интересен подход к расчёту рентабельности от дополнительного утепления форумчанина с ником mfcn :

– Рассмотрим следующие гипотетические условия:

  • в доме +20°C, на улице -5°C;
  • отопительный период – 180 дней;
  • дом – с однослойным каркасом, стоимостью 8000 руб/м3, утеплённый минеральной ватой по 1500 руб/м3;
  • стоимость монтажа – 1000 руб/м3 утепления;
  • шаг каркаса – 600 мм, толщина – 50 мм.

Исходя из этих данных, кубометр утепления стоит 3000 руб.

В целях экономии природных и энергетических ресурсов человечеством разработаны комплексные меры по утеплению зданий и доведению уровня тепловой изоляции до значения близкого к абсолютному. В этом материале будет раскрыта суть пассивного дома как современного и экономного типа жилья.

Понятия пассивности и энергоэффективности

Наш обзор обойдет стороной общепринятый перечень преимуществ и технических показателей. Например, энергоэффективным считается строение, потеря тепла в котором не превышает 10 кВт·ч с каждого квадратного метра в течение года, но о чем это должно сказать читателю? Если пересчитать, то за год с небольшого (до 150 м 2) дома уходит примерно 1,5-2 МВт энергии, что сопоставимо с энергопотреблением обычного коттеджа за один зимний месяц. Столько же потребляют 2-3 лампы накаливания по 100 Вт, включенные постоянно в течение одного года, что эквивалентно 200 м 3 природного газа.

Столь малое энергопотребление позволяет в принципе отказаться от системы отопления в доме, используя для обогрева тепло, выделяемое человеком, животными и бытовыми приборами. Если дом не требует целенаправленных затрат энергии на работу отопительных установок (или требует, но незначительный минимум), такой дом называют пассивным. Точно так же пассивным может называться дом с весьма высокими потерями тепла, потребность в котором восполняется собственной энергетической установкой, работающей на возобновляемых источниках энергии.

Так что энергоэффективный дом не обязательно претендует на звание пассивного, справедливо и обратное. Дом же, который не только покрывает собственные энергетические нужды, но и передает какой-либо вид энергии в общественную сеть, называют активным.

В чем основная идея пассивного дома

Все три вышеперечисленных понятия принято объединять: пассивный дом обладает максимально расширенным комплексом мер по обеспечению энергетической автономности. В конце концов, никому не интересно годами тестировать свое жилище, добиваясь норматива по теплопотерям для получения почетного звания. Важно, чтобы внутри было сухо, тепло и комфортно.

Существует мнение, что сегодня любая новостройка должна возводиться по технологии пассивного дома, благо, что технические решения есть даже для многоэтажных зданий. Это не лишено смысла: затраты на обслуживание дома за период междуремонтной эксплуатации обычно даже выше затрат на строительство .

Пассивный же дом при более объемных первоначальных вложениях практически не требует затрат весь срок службы, который, к тому же, превышает срок эксплуатации обычных зданий за счет абсолютной защиты несущих и ограждающих конструкций в комплексе с самыми современными и технологичными решениями строительства и ремонта.

Главной технической особенностью пассивного дома можно назвать непрерывный контур теплоизоляции, от фундамента до кровли. Такой «термос» хорошо сохраняет тепло, но не все материалы пригодны для его устройства.

Материалы для теплоизоляции

Пенополистирол в таких объемах неприменим, он горюч и токсичен. В ряде проектов это решается огнезащитным слоем у несущего целика и под фасадной отделкой, что ведет к неоправданному удорожанию. Использование стеклянной и минеральной ваты также не решает проблему. В ней, так же как и в пенополистироле, активно селятся вредители (насекомые и грызуны), да и срок службы у ваты в 2-3 меньше, чем у самого пассивного дома.

Пригодный для целей пассивного дома материал — пеностекло . Краткий свод характеристик: наименьшая теплопроводность из известных материалов широкого потребления, полная экологичность за счет инертности стекла, простая обработка и хорошая способность к склеиванию. Из минусов — высокая цена и сложность производства, но материал однозначно стоит своих денег.

Менее дорогостоящий, но пригодный для утепления пассивного дома материал — вспененный полиуретан. Технически такие дома пассивными назвать нельзя, их теплопотери составляют 30-50 кВт·ч с квадратного метра в год, но и эти показатели вполне приемлемы. Полиуретан может устанавливаться как листовой материал, либо наноситься методом торкрет-оштукатуривания.

Кровля и теплый чердак

Другое ключевое отличие пассивных домов — наличие неотапливаемой мансарды или теплого чердака и качественное утепление кровли без мостиков холода. При таком подходе выделяется две границы температур: на перекрытии верхнего этажа и в самой кровле. Благодаря разнесению теплозащиты гарантированно устраняется образование конденсата в утеплителе кровли и существенно снижаются потери тепла.

Перекрытие верхнего этажа обычно делают каркасным на деревянных балках, пустоты заполняют слоем минеральной ваты средней плотности толщиной в 20-25 см. Перекрытие лучше утеплять листовыми материалами с устройством перекрестного ячеистого каркаса и точной подгонкой плит утеплителя. Все швы и стыки заполняются специальным клеем или монтажной пеной. Особое внимание уделяется устройству защитного пояса в месте опоры стропильной системы на стены.

Теплый чердак устраивается по принципу рекуперации вентиляционной системы. Каналы вытяжной вентиляции выходят прямо в герметичное чердачное помещение, откуда выводятся через единственное отверстие с принудительным оттоком. Часто этот канал снабжают рекуперационной установкой, передающей часть тепла от вытяжного воздуха приточному.

Окна, двери и другие места утечек

С окнами для пассивного дома все просто: они должны быть высокого качества и обязательно сертифицированными для применения в отрасли энергосбережения. Признаками подходящего изделия считаются стеклопакеты с двумя или более камерами, заполненными газом, низкоэмиссионные стекла разной толщины и двойное примыкание стеклопакета к профилю, уплотненное каучуковой лентой. Для дверей важно сотовое наполнение и наличие двойного притвора по всему периметру. Не менее важно соблюдать правила монтажа и защиты мест примыканий.

Пассивный дом имеет свои особенности устройства фундамента. Для защиты структуры бетона его гидрофобизируют инъекционным способом и дополнительно защищают внешним слоем обмазочной гидроизоляции. Утеплитель опускается на всю глубину фундамента, таким образом цокольный этаж становится второй после теплого чердака буферной зоной.

Энергообеспечение пассивного дома

К пассивному дому обычно не подводят газ, для бытовых целей и обогрева полностью хватает однофазной электросети. С электрическими нагревателями все просто: сколько киловатт вложено в дом, столько в нем и остается, КПД составляет почти 99%, в отличие от газовых котлов.

Но электрическая сеть в качестве единственного источника энергоснабжения имеет массу недостатков, заключающихся по большей части в ненадежности подключения. Часто дома снабжаются достаточно сложной электросетью, включающей аварийный генератор с автозапуском, либо используют для резервной подпитки парк аккумуляторов или солнечные батареи.

Нагрев воды для бытовых нужд обычно выполняется солнечными коллекторами , преимущественно вакуумными. Вообще автономные источники энергии достаточно разнообразны, среди разновидностей можно подобрать оптимальное решение для объектов с разными условиями.

Современный дом – это в первую очередь дом, в котором затраты энергетических ресурсов оптимизированы, т.е. сведены к минимуму. Такой дом принято называть энергоэффективным. Что прячется под этим понятием, догадаться не трудно, а вот какие именно технологии применяются в процессе строительства таких домов – это уже вопрос, с которым следует разобраться подробнее. Именно этим вопросом мы и займемся в данной статье, в которой вместе с сайтом сайт разберемся, что такое энергоэффективный дом и какие технологии применяются в процессе его строительства.

Энергосберегающие технологии для частного дома фото

Энергоэффективный дом: зачем терять тепло понапрасну

По большому счету, такое понятие как, энергоэффективный жилой дом, в первую очередь призвано решать два основных вопроса: первый – это экономный расход ресурсов и второй – максимально полезное использование этих самых ресурсов. Эти два вопроса не являются взаимоисключающими – как раз наоборот, в энергоэффективном доме они решаются одновременно. Причина простая – невозможно экономить ресурсы, если выработанная благодаря им энергия не сохраняется, а улетучивается в непонятно какое измерение.

Это касается не только тепла в доме, но и многих других систем расходующих ресурсы. О них мы поговорим дальше, а пока ознакомимся с эффективными способами борьбы с потерей тепла в доме. Как таковой способ один – в целом он представляет сбой комплекс мероприятий, который включает в себя следующие моменты.


Кроме того, энергосберегающие технологии для дома предусматривают еще и (процесс минимизирует передачу холода от почвы в стены дома), а также теплоизоляцию крыши. В совокупности все эти технологии (естественно, при их грамотном использовании) способны обеспечить сохранность тепла в доме и снижение затрат на отопление примерно на 40-50 процентов. Следует понимать, что сохранить тепло – значит сэкономить на топливе.

Современный энергосберегающий дом: это не только теплый дом

В понятие энергосберегающих технологий вкладывается не только сохранение тепла в доме – кроме того, это еще и оптимальный расход других ресурсов, необходимых человеку для создания комфортной обстановки в доме.


Кроме того, энергоэффективность дома повышается в несколько раз, если вместо магистральных ресурсов в нем потребляется природная энергия. К примеру, электричество можно вырабатывать с помощью . Воду можно собирать дождевую и после очистки направлять на свои нужды. С помощью солнца и специальных можно даже нагревать воду и применять ее для отопления и горячего водоснабжения Частичный отказ от магистральных ресурсов – это шаг к полной энергонезависимости.

Как контролируются ресурсы в энергоэффективных домах

Любые энергосберегающие технологии позволяют в значительной мере сократить расход ресурсов – это понятно всем. Но вот чего многие люди не понимают, так это того, что контроль над этими технологиями, а вернее над их работой в доме, позволяет сэкономить еще львиную долю ресурсов, которая по своим размерам не такая уж и малая. Речь идет о снижении счетов за оплату ресурсов как минимум на 15-20%. Именно в этом и заключаются все прелести системы « » – тотальный автоматический контроль. Как контролирует умный дом расход ресурсов?


Естественно, внедрение этих энергосберегающих технологий для частного дома потребует немалых финансовых затрат, быстрая окупаемость которых во многих случаях остается под вопросом. Нет, они купаются, но происходит это не так уж и быстро, как хочется. Кроме того, выделить сразу большую сумму на внедрение всех энергосберегающих систем не так уж просто – как вариант, сделать энергоэффективный дом своими руками можно постепенно. В таком случае расходы будут равномерно распределены во времени. Также не следует забывать и о том, что частичное или полное выполнение работ в значительной мере снизит затраты на внедрение этих технологий.

В заключение темы про энергоэффективный дом добавлю еще несколько слов по поводу технологий, предоставляющих энергонезависимость – солнечные панели, солнечные коллекторы, которые предусматривают использование природной энергетики. Срок окупаемости таких систем может быть снижен, если вы заключите договор на поставку электроэнергии в центральные сети. Это возможно благодаря излишкам электроэнергии – днем она накапливается в аккумуляторах, которые, как говорится, не резиновые. После того, как емкости получат полную зарядку, энергию можно перенаправлять в центральные энергетические системы, и за эту энергию вам будут платить. Как вариант, излишки электричества, которые будут у вас в любом случае, можно продавать соседу по более низкой стоимости, чем у центральных систем энергоснабжения.