Электричество попадает в дом. Старт в науке

Как электроэнергия попадает к нам в дома, какой путь она проделывает, перед тем как оказаться в наших розетках, какие схемы по передаче электроэнергии существуют и где она вырабатывается? На все эти вопросы вы найдете ответы, прочитав эту статью до конца!

Рисунок 1. Передача и распределение электроэнергии.

Виды электростанций.

Основными источниками электроэнергии являются электростанции. В настоящее время самыми востребованными и эффективными из них являются:

Но так же для производства электроэнергии используются и геотермальные, ветровые, солнечные электростанции. В последнее время их популярность растет с каждым годом, так как эти электростанции более экологичны и безопасны для природы и человека.

Для того чтобы передать электроэнергию от электростанции к потребителю она должна пройти длинный путь через большое количество устройств. Каких устройств и для чего они нужны, мы сейчас разберемся.

Рисунок 2. Атомная электростанция.

Важнейшая проблема передачи электроэнергии состоит в том, что при передаче ее на большие расстояния возникают большие потери мощности тока. Основная причина этих потерь это сопротивления в проводниках, по которым передается электричество.Отсюда возникает вопрос, как снизить сопротивление в проводах?

Чтобы снизить сопротивление в проводах необходимо увеличить их площадь поперечного сечение. Но учитывая длину, на которую нужно передать электроэнергию, очевидно, что это невыгодно. Есть еще один способ, чтобы передать ту же мощность по проводам, можно уменьшить силу тока протекающего по проводам увеличив напряжение.

Этот процесс можно сравнить с водопроводной трубой, где вода это электрический ток, труба это проводник, объем воды протекающий через трубу это мощность, давление воды это напряжение.

Теперь все понятно, увеличивать диаметр трубы, чтобы поступало больше воды не выгодно из-за большого расстояния, нужно увеличить давление напряжение, чтобы через тот же диаметр трубы протекало больше воды. Правда придётся увеличить и толщину трубы, чтобы ее не порвало, в электрике это будет увеличение толщины изоляторов, чтобы не было пробоя. Но все равно это выгодней!

Напряжение воздушных линий электропередач.

Для того чтобы повысить напряжение на электростанциях используются повышающие трансформаторы. От электростанции высокое напряжение передается по линиям электропередач (ЛЭП). Напряжение в ЛЭП зависит от длины, на которую нужно передать электроэнергию.

Чем дальше от электростанции находятся потребители, тем выше должно быть напряжение в линии электропередач, для того чтобы избежать потерь. Величина напряжения в зависимости от длины линии может быть. Самая высоковольтная ЛЭП в мире находится в России, ее напряжение 1150кВ.

  • Сверхдальние ЛЭП напряжением от 500кВ, 750кВ, 1150кВ.
  • Магистральные ЛЭП напряжением 220кВ, 330кВ.
  • Распределительные ЛЭП напряжением 35кВ, 110кВ, 150кВ.

Высокое напряжение от электростанций по ЛЭП приходит на центральные распределительные подстанции (ЦРП) которые находятся непосредственно в городах или близко к ним. Там происходит понижение напряжения, если это необходимо и распределение электроэнергии по линиям более низкого напряжения 220,110кВ. Эти линии питают подстанции соответственно 110,220кВ, которые распределены по районам города, как правило, это несколько подстанций на район.

Рисунок 3. Высоковольтная ЛЭП.

На подстанциях 110,220кВ напряжение понижается до 6,10кВ и распределяется по трансформаторным пунктам (ТП) через кабельные линии которые проложены в земле. Один трансформаторный пункт (ТП) может питать несколько многоэтажных жилых домов. В среднем это 2, 3 или 4 в зависимости от этажности жилых дома на одну ТП.

Приходящее на ТП напряжение 6 либо 10кВ снова понижается уже до всем нам привычного 0.4кВ (220, 380В). С ТП напряжение 380В по кабельным линиям подается на жилые дома. От щитовых жилых домов, электроэнергия расходится по кабельным линиям в этажные щиты, а от этажных щитов подается в наши квартиры.

Как всем хорошо известно – электроэнергия от места её производства доставляется к удалённому потребителю по высоковольтным линиям электропередач, рассчитанным на напряжения 110 кВ, 220 кВ или 330 кВ. После того, как электроэнергия по высоковольтным проводам доставляется в ваш район - она должна быть преобразована в знакомое для нас напряжение 220 вольт. Поэтому, прежде всего, оно преобразуется в более низкие напряжения 6, 10 или 35 кВ, а уж затем на местных трансформаторных подстанциях (ТП) превращается в трехфазное напряжение 380/220 В.

Трансформаторные подстанции могут иметь различные мощности и виды исполнения. Мощные городские трансформаторные подстанции устраиваются, как правило, в отдельных строениях, в которых размещаются специальные понижающие масляные трансформаторы и всё необходимое для надёжной работы подстанции коммутационное и защитное оборудование.

Высоковольтное напряжение, поступающее на городские трансформаторные подстанции, может подаваться на них по подземным кабельным каналам. По таким же подземным кабельным каналам непосредственно к вашему дому доставляется и пониженное трёхфазное напряжение 380/220 В. И только на вводном щитке всего здания это трёхфазное напряжение расключается на отдельные фазные линии с учётом равномерного распределения нагрузок по каждой из фаз.

Для небольших сельских и загородных трансформаторных подстанций отдельное строение, как правило, не предусматривается. Сельские подстанции представляют собой закрытую по периметру площадку с установленным прямо под открытым небом оборудованием, состоящим обычно всего из одного трансформатора.

При этом высокое напряжение к таким ТП подводится по воздушной линии (ВЛ), а пониженное напряжение распределяется по линейным потребителям - садовым домикам или сельским домам - по другой воздушной линии, закрепленной на столбах (опорах).

Как городская, так и сельская ТП позволяют получить рабочее трехфазное напряжение, поступающее ваш дом по трем фазным проводам, обозначаемым обыкновенно как фазы «А», «В» и «С». Правда на ТП к этим трём фазным проводам добавляется еще один провод N, который принято называть нейтральным. Этот провод появляется в результате организации местного защитного заземления оборудования подстанции, которое монтируется в непосредственной близости от неё. При этом напряжение между парами фазных проводов А-В, В-С и А-С составляет величину, равную 380 В и называется линейным напряжением.

Напряжение же между каждым из фазных проводов и нейтральным проводником называется фазным и составляет величину 220 В. Это и есть то самое напряжение, от которого работают все наши бытовые приборы, а также зажигаются квартирные осветительные приборы.
Подобная схема бытового электроснабжения жилых зданий и строений получила название "трехфазной четырехпроводной" и используется она чаще всего в системах бытового энергоснабжения. Основная задача последующей разводки системы состоит в том, чтобы на каждую из трёх фазных линий A-N, B-N и C-N приходилась (по возможности) одинаковая нагрузка.

При проведении подключения к трёхфазной четырёхпроводной сети отдельных садовых участков, например, стараются распределить потребителей по фазам так, чтобы к каждой фазной линии подключалось примерно одинаковое количество домиков и осветительных приборов, установленных на территории садового кооператива.

Помимо распределения энергии по потребителям, подстанции всех типов способны также решать еще одну очень важную задачу. Они оснащены специальным переключателем обмоток масляного трансформатора, который позволят регулировать выходное напряжение и устанавливать рабочее значение напряжения 380 В на выходе ТП с заданной точностью. Поступающее к потребителю рабочее фазное напряжение 220 В при этом также будет задаваться с определённой точностью, т.е. находиться в пределах допустимых отклонений. А величина отклонения питающего напряжения от его номинального значения и его изменения в течение суток, как известно, в значительной степени определяют надёжность работы электрооборудования и его долговечность

Как электричество попадает в наши дома и квартиры? В этой статье доступно простым языком, рассмотрена схема энергоснабжения частного дома и квартиры в многоэтажном доме. Рассмотрим две типовых схемы подачи электроэнергии в наши дома и квартиры.

1. Типовая схема подачи электроэнергии в частный дом.

В частном секторе электроэнергия от трансформаторной подстанции по воздушным линиям электропередач подается к домам потребителей.

От линии электропередач электроэнергия по проводам подается на герметичный бокс, который устанавливается на столбе или на фасаде дома. В боксе устанавливается вводной автоматический выключатель, к которому подключаются провода от воздушной линии.

После вводного автомата устанавливается прибор учета электроэнергии — электрический счетчик. Бокс пломбируется от возможности постороннего доступа энерго-обслуживающей организацией.

От бокса со счетчиком электроэнергия по кабелю подается в дом, где обычно устанавливают внутренний .

В этом электрощите устанавливаются аппараты защиты: автоматические выключатели, (УЗО) и другие модульные устройства. К ним подключаются различные группы потребителей: электроплиты, водонагреватели, кондиционеры, розетки для подключения приборов, светильники.

Защищают цепи потребителей от токов короткого замыкания и перегрузок, а также позволяют при необходимости отключить конкретную электрическую цепь для проведения ремонтных работ.

2. Схема подачи электроэнергии в многоэтажных домах.

В многоэтажных домах подача электроэнергии происходит немного по другой схеме.

От трансформаторной подстанции электроэнергия подается к главному распределительному щиту ГРЩ здания, который обычно устанавливается в щитовой здания. Электрические кабели обычно прокладывают под землей.

От главного распределительного щита питающие кабели заводятся в каждый подъезд и по специальным этажным стоякам подводятся к этажным распределительным щитам, которые устанавливаются на каждом этаже в этажных коридорах.

В этажных распределительных щитах устанавливаются вводные автоматические выключатели и счетчики электроэнергии отдельно на каждую квартиру. Количество счетчиков такое же, как и количество квартир на этаже.

Могут устанавливаться как в этажном распределительном щите, так и в отдельно вынесенном , который чаще всего устанавливается в прихожей квартир.

В общем случае схема электрической сети квартиры или дом а будет выглядеть, как на схеме ниже.

Электроэнергия от внешней электросети подается на вводной автоматический выключатель.

После него подключается счетчик электроэнергии.

После счетчика подключаются групповые автоматические выключатели, через которые подключаются потребители — бытовые приборы: электроплиты, водонагреватели, кондиционеры, светильники и др.

Для большей наглядности посмотрите видео: Как электроэнергия попадает в дома и квартиры.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Откуда в наш дом приходит электричество? Хрычева Т.П.

ЗАГАДКА Мигнёт, моргнёт, В пузырек нырнет, В пузырёк под потолок- Ночью в комнате денек!

Что использовали люди в давние времена для того, чтобы было светло?

В давние-давние времена людям по ночам светил лишь огонь костра.

Люди догадались со временем, что, если в костёр опустить палку, она загорится. Так появился факел.

Позднее в домах стали использовать палочки поменьше - лучины. Ставили лучины на специальную подставку – светец.

Со временем люди стали наливать в маленькую мисочку масло, класть туда фитиль из ниток и поджигать его. Так появились масляные лампы

А ещё позже люди придумали свечку.

Однажды один умный человек изобрёл электрическую лампочку. Она горит ярко, удобно и безопасно.

Что заставляет работать лампочку? По тропинкам я бегу, Без тропинки не могу. Где меня ребята нет, Не зажжётся в доме свет К дальним сёлам, городам Кто идёт по проводам? Светлое величество Это

Электрические заряды в природе

Э лектрический ток – это поток мельчайших заряженных частиц – электронов. Он похож на реку, только в реке течёт вода, а по проводам – электроны. Э лектрический ток вырабатывают большие электростанции.

Э лектрический ток сначала течёт по толстым высоковольтным проводам, потом по обычным проводам перетекает в наши квартиры, попадая в выключатели и розетки.

Как нам помогает электричество? Разбей на 2 группы

ЗАПОМНИ ПРАВИЛА! Уходишь из дома выключай свет и электрические приборы!


По теме: методические разработки, презентации и конспекты

Презентация "Откуда в наш дом приходит электричество?" к учебнику А.А. Плешакова "Окружающий мир 1 класс"

Презентация "Откуда в наш дом приходит электричество?" к учебнику А.А. Плешакова "Окружающий мир 1 класс"...

Урок окружающего мира в 1 классе "Откуда в наш дом приходит вода и куда она уходит"

Урок составлен в соответствии с требованиями ФГОС. Комплект учебников и рабочих тетрадей (автор А.А.Плешаков) по УМК "Школа России"....

Тема: «Откуда в наш дом приходит вода, и куда она уходит». Цели: Образовательные:-познакомить детей с природными источниками воды, используемой в быту;- сформировать у детей представления о том, как...

Здравствуйте всем читателям моего сайта!

Задумывались ли вы когда- нибудь а как же в нашем доме или квартире появляется электроэнергия? Откуда она приходит?

Какой путь проходит электрический ток перед тем как попасть к нам в розетку или лампочку и выделиться в виде тепла или света?
Сейчас я постараюсь ответить на эти вопросы и что бы было нагляднее- еще и покажу в видеороликах, надеюсь что будет наглядно и интересно.
Итак, как сказал великий Гагарин- поехали!

Изначально электроэнергия появляется на различных электростанциях- атомные, тепловые, гидро- ветроэлектростанции и даже геотермальные и солнечные электростанции. Я не буду сейчас подробно рассказывать каким образом там осуществляется процесс преобразования энергии солнца, пара, ветра или воды в электрическую энергию- это очень обширная информация и тема для отдельного разговора.

Вот в статье вы можете подробнее посмотреть о электростанции где энергия пара превращается в электричество.

Для нас важно то, что с электростанций выходит электроэнергия и электрический ток передается по воздушным линиям на промежуточные понижающие подстанции.
Для снижения потерь электроэнергии в проводах напряжение на воздушной линии при выходе из электростанции очень высокое- 110, 220, 330, 500, 750 а то и 1150 кВ! Представляете?- Миллион вольт идет по проводам!

Для этого на электростанции установлен повышающий трансформатор, на вход которого п оступает напряжение к примеру 10000 вольт от генератора электростанции, а со вторичной обмотки уже выходит напряжение 110 или 220 киловольт(кВ) или 110000-220000 вольт.

Для чего повышается напряжение на выходе с электростанции? Тут на самом деле все очень просто, чем меньше напряжение- тем больше ток и тем больше нагреваются провода, то есть простыми словами провода начинают оказывать сопротивление прохождению электрического тока и чем больше ток- тем большее сопротивление оказывают провода.

Это как в водопроводе- если на выходе водонапорной башни сделать тонкую трубу, то напор воды будет очень плохим и в конце водопровода вода из крана может и совсем не бежать… Хотя скорость движения воды при этом в тонкой трубе будет очень высокой.

Аналогия с электричеством- в начале линии напряжение может быть к примеру 230 вольт, а в конце- 150 вольт. Тут никакой стабилизатор напряжения не поможет)))
То есть аналогия с высоким напряжением- это большой диаметр водопроводной трубы с водонапорной башни (башня- это электростанция, трубы- это провода, диаметр труб- это напряжение).
Поэтому очень важно что бы падение напряжения в проводах ВЛ было минимальным и провода оказывали минимальное сопротивление прохождению электрического тока.

Итак, по высоковольтным проводам линии электропередачи электроэнергия поступает на понижающую подстанцию (они тоже есть на разное напряжение) я же буду расказывать о ПС-110/10кВ, вот одна из таких подстанций:

Как выглядит подстанция с высоты птичьего полета можете посмотреть вот в этом видеоролике:

На подобных подстанциях напряжение понижается до 10000 вольт с помощью силовых трансформаторов 110/10кВ:

Специально по этому случаю я даже снимал видеоролики на тему “Как электричество приходит к нам в дом”:

Так же я показывал видеообзор устройства высоковольтной понижающей подстанции вот в этом ролике:

С подстанции 110/10кВ электрический ток напряжением 10000 вольт поступает по воздушным или кабельным линиям на еще одну понижающую трансформаторную ТП (трансформаторную подстанцию) подобную вот этой КТП:

Давайте посмотрим что находится за дверями этой ТП:

Как видите тут находится силовое электрооборудование и даже релейная защита! Эта КТП от производителя из г. Самары, от “Электрощит”. Специально для читателей моего сайта я решил показать поподробнее устройство такой понижающей ТП в видеоролике, надеюсь вам будет интересно и познавательно:

Ну а уже после этой или подобной ТП пониженное до 380 вольт напряжение опять же по воздушным или кабельным линиям приходит или непосредственно в наш дом- в щит учета или для тех кто живет в квартирах- электрический ток приходит в ВРУ (вводно-распределительное устройство), затем через этажные распред.щиты где распределяется по фазам и 220 вольт уже идет в квартиру.

Если говорить об отдельном доме- то там 220 вольт выходит или из трехфазного щита учета или из распределительного щитка, или- фаза и ноль (то есть 220 вольт) берутся непосредственно с опоры ВЛ.

Об одном из трехфазном щите учета, сделанном еще в советские времена я рассказывал вот в этом видеоролике:

Надеюсь моя информация будет вам полезная и из этой статьи вы узнали какой долгий путь проходит электрический ток на пути от электростанции- до розетки 220вольт в нашем доме.