Как посчитать потери тепла в трубопроводе. Как произвести расчет тепловых потерь трубопроводов

На сегодняшний день теплосбережение является важным параметром, который учитывается при сооружении жилого или офисного помещения. В соответствии со СНиП 23-02-2003 «Тепловая защита зданий», сопротивление теплоотдаче рассчитывается по одному из двух альтернативных подходов:

  • Предписывающему;
  • Потребительскому.

Для расчета систем отопления дома, вы можете воспользоваться калькулятором расчета отопления, теплопотерь дома .

Предписывающий подход - это нормы, предъявляемые к отдельным элементам теплозащиты здания: наружным стенам, полам над не отапливаемым пространствами, покрытиям и чердачным перекрытиям, окнам, входным дверям и т.д.

Потребительский подход (сопротивление теплопередаче может быть снижено по отношению к предписывающему уровню при условии, что проектный удельный расход тепловой энергии на отопление помещения ниже нормативного).

Санитарно-гигиенические требования:

  • Перепад между температурами воздуха внутри помещения и снаружи не должен превышать определенных допустимых значений. Максимальные допустимые значения перепада температур для наружной стены 4°С. для покрытия и чердачного перекрытия 3°С и для перекрытия над подвалами и подпольями 2°С.
  • Температура на внутренней поверхности ограждения должна быть выше температуры точки росы.

К примеру : для Москвы и московской области необходимое теплотехническое сопротивление стены по потребительскому подходу составляет 1.97 °С· м 2 /Вт, а по предписывающему подходу:

  • для дома постоянного проживания 3.13 °С· м 2 / Вт.
  • для административных и прочих общественных зданий, в том числе сооружений сезонного проживания 2.55 °С· м 2 / Вт.

По этой причине, выбирая котел либо другие нагревательные приборы исключительно по указанным в их технической документации параметрам. Вы должны спросить у себя, построен ли ваш дом со строгим учетом требований СНиП 23-02-2003.

Следовательно, для правильного выбора мощности котла отопления либо нагревательных приборов, необходимо рассчитать реальные теплопотери вашего дома . Как правило, жилой дом теряет тепло через стены, крышу, окна, землю, так же существенные потери тепла могут приходиться на вентиляцию.

Теплопотери в основном зависят от:

  • разницы температур в доме и на улице (чем выше разница, тем выше потери).
  • теплозащитных характеристик стен, окон, перекрытий, покрытий.

Стены, окна, перекрытия, имеют определенное сопротивление утечкам тепла, теплозащитные свойства материалов оценивают величиной, которая называется сопротивлением теплопередачи .

Сопротивление теплопередачи покажет, какое количество тепла просочится через квадратный метр конструкции при заданном перепаде температур. Можно сформулировать этот вопрос по другому: какой перепад температур будет возникать при прохождении определенного количества тепла через квадратный метр ограждений.

R = ΔT/q.

  • q - это количество тепла, которое уходит через квадратный метр поверхности стены или окна. Это количество тепла измеряют в ваттах на квадратный метр (Вт/ м 2);
  • ΔT - это разница между температурой на улице и в комнате (°С);
  • R - это сопротивление теплопередачи (°С/ Вт/ м 2 или °С· м 2 / Вт).

В случаях, когда речь идет о многослойной конструкции, то сопротивление слоев просто суммируется. К примеру, сопротивление стены из дерева, которая обложена кирпичом, является суммой трех сопротивлений: кирпичной и деревянной стенки и воздушной прослойки между ними:

R(сумм.)= R(дерев.) + R(воз.) + R(кирп.)

Распределение температуры и пограничные слои воздуха при передаче тепла через стену.

Расчет теплопотерь выполняется для самого холодного периода года периода, коим является самая морозная и ветреная неделя в году. В строительной литературе, зачастую, указывают тепловое сопротивление материалов исходя из данного условия и климатического района (либо наружной температуры), где находится ваш дом.

Таблица сопротивления теплопередачи различных материалов

при ΔT = 50 °С (Т нар. = -30 °С. Т внутр. = 20 °С.)

Материал и толщина стены

Сопротивление теплопередаче R m .

Кирпичная стена
толщ. в 3 кирп. (79 сантиметров)
толщ. в 2.5 кирп. (67 сантиметров)
толщ. в 2 кирп. (54 сантиметров)
толщ. в 1 кирп. (25 сантиметров)

0.592
0.502
0.405
0.187

Сруб из бревна Ø 25
Ø 20

0.550
0.440

Сруб из бруса

Толщ. 20 сантиметров
Толщ. 10 сантиметров

0.806
0.353

Каркасная стена (доска +
минвата + доска) 20 сантиметров

Стена из пенобетона 20 сантиметров
30 см

0.476
0.709

Штукатурка по кирпичу, бетону.
пенобетону (2-3 см)

Потолочное (чердачное) перекрытие

Деревянные полы

Двойные деревянные двери

Таблица тепловых потерь окон различных конструкций при ΔT = 50 °С (Т нар. = -30 °С. Т внутр. = 20 °С.)

Тип окна

R T

q . Вт/м2

Q . Вт

Обычное окно с двойными рамами

Стеклопакет (толщина стекла 4 мм)

4-16-4
4-Ar16-4
4-16-4К
4-Ar16-4К

0.32
0.34
0.53
0.59

156
147
94
85

250
235
151
136

Двухкамерный стеклопакет

4-6-4-6-4
4-Ar6-4-Ar6-4
4-6-4-6-4К
4-Ar6-4-Ar6-4К
4-8-4-8-4
4-Ar8-4-Ar8-4
4-8-4-8-4К
4-Ar8-4-Ar8-4К
4-10-4-10-4
4-Ar10-4-Ar10-4
4-10-4-10-4К
4-Ar10-4-Ar10-4К
4-12-4-12-4
4-Ar12-4-Ar12-4
4-12-4-12-4К
4-Ar12-4-Ar12-4К
4-16-4-16-4
4-Ar16-4-Ar16-4
4-16-4-16-4К
4-Ar16-4-Ar16-4К

0.42
0.44
0.53
0.60
0.45
0.47
0.55
0.67
0.47
0.49
0.58
0.65
0.49
0.52
0.61
0.68
0.52
0.55
0.65
0.72

119
114
94
83
111
106
91
81
106
102
86
77
102
96
82
73
96
91
77
69

190
182
151
133
178
170
146
131
170
163
138
123
163
154
131
117
154
146
123
111

Примечание
. Четные цифры в условном обозначении стеклопакета указывают на воздушный
зазор в миллиметрах;
. Буквы Ar означают, что зазор заполнен не воздухом, а аргоном;
. Буква К означает, что наружное стекло имеет специальное прозрачное
теплозащитное покрытие.

Как видно из вышеуказанной таблицы, современные стеклопакеты дают возможность сократить теплопотери окна почти в 2 раза. К примеру, для 10 окон размером 1.0 м х 1.6 м экономия может достигать в месяц до 720 киловатт-часов.

Для правильного выбора материалов и толщины стен применим эти сведения к конкретному примеру.

В расчете тепловых потерь на один м 2 участвуют две величины:

  • перепад температур ΔT.
  • сопротивления теплопередаче R.

Допустим температура в помещении будет составлять 20 °С. а наружная температура будет равной -30 °С. В таком случае перепад температур ΔT будет равен 50 °С. Стены изготовлены из бруса толщиной 20 сантиметров, тогда R= 0.806 °С· м 2 / Вт.

Тепловые потери будут составлять 50 / 0.806 = 62 (Вт/ м 2).

Для упрощения расчетов теплопотерь в строительных справочниках указывают теплопотери различного вида стен, перекрытий и т.д. для некоторых значений зимней температуры воздуха. Как правило, приводятся различные цифры для угловых помещений (там влияет завихрение воздуха, отекающего дом) и неугловых , а также учитывается разница в температур для помещений первого и верхнего этажа.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру стен) в зависимости от средней температуры самой холодной недели в году.

Характеристика
ограждения

Наружная
температура.
°С

Теплопотери. Вт

1 этаж

2 этаж

Угловая
комната

Неугл.
комната

Угловая
комната

Неугл.
комната

Стена в 2.5 кирпича (67 см)
с внутр. штукатуркой

24
-26
-28
-30

76
83
87
89

75
81
83
85

70
75
78
80

66
71
75
76

Стена в 2 кирпича (54 см)
с внутр. штукатуркой

24
-26
-28
-30

91
97
102
104

90
96
101
102

82
87
91
94

79
87
89
91

Рубленая стена (25 см)
с внутр. обшивкой

24
-26
-28
-30

61
65
67
70

60
63
66
67

55
58
61
62

52
56
58
60

Рубленая стена (20 см)
с внутр. обшивкой

24
-26
-28
-30

76
83
87
89

76
81
84
87

69
75
78
80

66
72
75
77

Стена из бруса (18 см)
с внутр. обшивкой

24
-26
-28
-30

76
83
87
89

76
81
84
87

69
75
78
80

66
72
75
77

Стена из бруса (10 см)
с внутр. обшивкой

24
-26
-28
-30

87
94
98
101

85
91
96
98

78
83
87
89

76
82
85
87

Каркасная стена (20 см)
с керамзитовымзаполнением

24
-26
-28
-30

62
65
68
71

60
63
66
69

55
58
61
63

54
56
59
62

Стена из пенобетона (20 см)
с внутр. штукатуркой

24
-26
-28
-30

92
97
101
105

89
94
98
102

87
87
90
94

80
84
88
91

Примечание. В случае когда за стеной находится наружное неотапливаемое помещение (сени, остекленная веранда и т.п.), то потери тепла через нее будут составлять 70% от расчетных, а если за этим неотапливаемым помещением находится еще одно наружное помещение то потери тепла будут составлять 40% от расчетного значения.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру) в зависимости от средней температуры самой холодной недели в году.

Пример 1.

Угловая комната (1 этаж)


Характеристики комнаты:

  • 1 этаж.
  • площадь комнаты - 16 м 2 (5х3.2).
  • высота потолка - 2.75 м.
  • наружных стен - две.
  • материал и толщина наружных стен - брус толщиной 18 сантиметров обшит гипсокартонном и оклеен обоями.
  • окна - два (высота 1.6 м. ширина 1.0 м) с двойным остеклением.
  • полы - деревянные утепленные. снизу подвал.
  • выше чердачное перекрытие.
  • расчетная наружная температура -30 °С.
  • требуемая температура в комнате +20 °С.
  • Площадь наружных стен за вычетом окон: S стен (5+3.2)х2.7-2х1.0х1.6 = 18.94 м 2 .
  • Площадь окон: S окон = 2х1.0х1.6 = 3.2 м 2
  • Площадь пола: S пола = 5х3.2 = 16 м 2
  • Площадь потолка: S потолка = 5х3.2 = 16 м 2

Площадь внутренних перегородок в расчете не участвует, так как по обе стороны перегородки температура одинакова, следовательно через перегородки тепло не уходит.

Теперь Выполним расчет теплопотери каждой из поверхностей:

  • Q стен = 18.94х89 = 1686 Вт.
  • Q окон = 3.2х135 = 432 Вт.
  • Q пола = 16х26 = 416 Вт.
  • Q потолка = 16х35 = 560 Вт.

Суммарные теплопотери комнаты будут составлять: Q суммарные = 3094 Вт.

Следует учитывать, что через стены улетучивается тепла куда больше чем через окна, полы и потолок.

Пример 2

Комната под крышей (мансарда)


Характеристики комнаты:

  • этаж верхний.
  • площадь 16 м 2 (3.8х4.2).
  • высота потолка 2.4 м.
  • наружные стены; два ската крыши (шифер, сплошная обрешетка. 10 саниметров минваты, вагонка). фронтоны (брус толщиной 10 саниметров обшитый вагонкой) и боковые перегородки (каркасная стена с керамзитовым заполнением 10 саниметров).
  • окна - 4 (по два на каждом фронтоне), высотой 1.6 м и шириной 1.0 м с двойным остеклением.
  • расчетная наружная температура -30°С.
  • требуемая температура в комнате +20°С.
  • Площадь торцевых наружных стен за вычетом окон: S торц.стен = 2х(2.4х3.8-0.9х0.6-2х1.6х0.8) = 12 м 2
  • Площадь скатов крыши, ограничивающих комнату: S скатов.стен = 2х1.0х4.2 = 8.4 м 2
  • Площадь боковых перегородок: S бок.перегор = 2х1.5х4.2 = 12.6 м 2
  • Площадь окон: S окон = 4х1.6х1.0 = 6.4 м 2
  • Площадь потолка: S потолка = 2.6х4.2 = 10.92 м 2

Далее рассчитаем тепловые потери этих поверхностей, при этом необходимо учесть, что через пол в данном случае тепло не будет уходить, так как внизу расположено теплое помещение. Теплопотери для стен рассчитываем как для угловых помещений, а для потолка и боковых перегородок вводим 70-процентный коэффициент, так как за ними располагаются неотапливаемые помещения.

  • Q торц.стен = 12х89 = 1068 Вт.
  • Q скатов.стен = 8.4х142 = 1193 Вт.
  • Q бок.перегор = 12.6х126х0.7 = 1111 Вт.
  • Q окон = 6.4х135 = 864 Вт.
  • Q потолка = 10.92х35х0.7 = 268 Вт.

Суммарные теплопотери комнаты составят: Q суммарные = 4504 Вт.

Как мы видим, теплая комната 1 этажа теряет (либо потребляет) значительно меньше тепла, чем мансардная комната с тонкими стенками и большой площадью остекления.

Чтобы данное помещение сделать пригодным для зимнего проживания, необходимо в первую очередь утеплять стены, боковые перегородки и окна.

Любая ограждающая поверхность может быть представлена в виде многослойной стены, каждый слой которой имеет собственное тепловое сопротивление и собственное сопротивление прохождению воздуха. Суммировав тепловое сопротивление всех слоев, мы получим тепловое сопротивление всей стены. Также ели просуммировать сопротивление прохождению воздуха всех слоев, можно понять, как дышит стена. Самая лучшая стена из бруса должна быть эквивалентна стене из бруса толщиной 15 - 20 антиметров. Приведенная далее таблица поможет в этом.

Таблица сопротивления теплопередаче и прохождению воздуха различных материалов ΔT=40 °С (Т нар. =-20 °С. Т внутр. =20 °С.)


Слой стены

Толщина
слоя
стены

Сопротивление
теплопередаче слоя стены

Сопротивл.
Воздухопро-
ницаемости
эквивалентно
брусовой стене
толщиной
(см)

Эквивалент
кирпичной
кладке
толщиной
(см)

Кирпичная кладка из обычного
глиняного кирпича толщиной:

12 сантиметров
25 сантиметров
50 сантиметров
75 сантиметров

12
25
50
75

0.15
0.3
0.65
1.0

12
25
50
75

6
12
24
36

Кладка из керамзитобетонных блоков
толщиной 39 см с плотностью:

1000 кг / м 3
1400 кг / м 3
1800 кг / м 3

1.0
0.65
0.45

75
50
34

17
23
26

Пено- газобетон толщиной 30 см
плотностью:

300 кг / м 3
500 кг / м 3
800 кг / м 3

2.5
1.5
0.9

190
110
70

7
10
13

Брусовал стена толщиной (сосна)

10 сантиметров
15 сантиметров
20 сантиметров

10
15
20

0.6
0.9
1.2

45
68
90

10
15
20

Для полной картины теплопотерь всего помещения нужно учитывать

  1. Потери тепла через контакт фундамента с мерзлым грунтом, как правило принимают 15% от потерь тепла через стены первого этажа (с учетом сложности расчета).
  2. Потери тепла, которые связаны с вентиляцией. Данные потери рассчитываются с учетом строительных норм (СНиП). Для жилого дома требуется около одного воздухообмена в час, то есть за это время необходимо подать тот же объём свежего воздуха. Таким образом, потери которые связаны с вентиляцией будут составлять немного меньше чем сумма теплопотерь приходящиеся на ограждающие конструкции. Выходит, что теплопотери через стены и остекление составляет только 40%, а теплопотери на вентиляцию 50%. В европейских нормах вентиляции и утепления стен, соотношение теплопотерь составляют 30% и 60%.
  3. Если стена «дышит», как стена из бруса или бревна толщиной 15 - 20 сантиметров то происходит возврат тепла. Это позволяет снизить тепловые потери на 30%. поэтому полученную при расчете величину теплового сопротивления стены необходимо умножить на 1.3 (или соответственно уменьшить теплопотери ).

Суммировав все теплопотери дома, Вы сможете понять какой мощности котел и отопительные приборы необходимы для комфортного обогрева дома в самые холодные и ветряные дни. Также, подобные расчеты покажут, где «слабое звено» и как его исключить с помощью дополнительной изоляции.

Выполнить расчет расхода тепла можно и по укрупненным показателям. Так, в 1-2 этажных не очень утепленных домах при наружной температуре -25 °С необходимо 213 Вт на 1 м 2 общей площади, а при -30 °С - 230 Вт. Для хорошо утепленных домов - этот показатель будет составлять: при -25 °С - 173 Вт на м 2 общей площади, а при -30 °С - 177 Вт.

В.Г. Хромченков, зав. лаб., Г.В. Иванов, аспирант,
Е.В. Хромченкова, студент,
кафедра «Промышленные теплоэнергетические системы»,
Московский энергетический институт (технический университет)

В данной работе обобщены некоторые результаты проведенных нами обследований участков тепловых сетей (ТС) системы теплоснабжения жилищно-коммунальной сферы с анализом существующего уровня потерь тепловой энергии в тепловых сетях. Работа выполнялась в различных регионах РФ, как правило, по просьбе руководства ЖКХ. Значительный объем исследований проводился также в рамках Проекта передачи ведомственного жилого фонда, связанного с кредитом Мирового Банка.

Определение потерь тепла при транспорте теплоносителя является важной задачей, результаты решения которой оказывают серьезное влияние в процессе формирования тарифа на тепловую энергию (ТЭ). Поэтому знание этой величины позволяет также правильно выбирать мощности основного и вспомогательного оборудования ЦТП и, в конечном счете, источника ТЭ. Величина тепловых потерь при транспорте теплоносителя может стать решающим фактором при выборе структуры системы теплоснабжения с возможной ее децентрализацией, выборе температурного графика ТС и др. Определение реальных тепловых потерь и сравнение их с нормативными значениями позволяет обосновать эффективность проведения работ по модернизации ТС с заменой трубопроводов и/или их изоляции.

Зачастую величина относительных тепловых потерь принимается без достаточных на то обоснований. На практике задаются значениями относительных тепловых потерь часто кратными пяти (10 и 15%). Следует отметить, что в последнее время все больше муниципальных предприятий проводят расчеты нормативных тепловых потерь , которые, на наш взгляд, и должны определяться в обязательном порядке. Нормативные потери тепла напрямую учитывают основные влияющие факторы: длину трубопровода, его диаметр и температуры теплоносителя и окружающей среды. Не учитывают только фактическое состояние изоляции трубопроводов. Нормативные тепловые потери должны рассчитываться для всей ТС с определением потерь тепла с утечками теплоносителя и с поверхности изоляции всех трубопроводов, по которым осуществляется теплоснабжение от имеющегося источника тепла. Причем эти расчеты должны выполняться как в плановом (расчетном) варианте с учетом среднестатистических данных по температуре наружного воздуха, грунта, продолжительности отопительного периода и т.д., так и уточняться в конце его по фактическим данным указанных параметров, в том числе с учетом фактических температур теплоносителя в прямом и обратном трубопроводе.

Однако, даже имея правильно определенные средние нормативные потери по всей городской ТС, нельзя эти данные переносить на отдельные ее участки, как это зачастую делается, например, при определении величины присоединенной тепловой нагрузки и выборе мощностей теплообменного и насосного оборудования строящегося или модернизируемого ЦТП. Необходимо их рассчитать для данного конкретного участка ТС, иначе можно получить существенную ошибку. Так, например, при определении нормативных потерь тепла для двух произвольно выбранных нами микрорайонов одного из городов Красноярской области, при примерно одинаковой их расчетной присоединенной тепловой нагрузке одного из них они составили 9,8%, а другого - 27%, т.е. оказались в 2,8 раза большими. Средняя же величина тепловых потерь по городу, принимаемая при проведении расчетов, - 15%. Таким образом, в первом случае тепловые потери оказались в 1,8 раза ниже, а в другом - в 1,5 раза выше средних нормативных потерь. Столь большая разница легко объясняется, если разделить количество переданного за год тепла на площадь поверхности трубопровода, через которую происходит потеря тепла. В первом случае это соотношение равно 22,3 Гкал/м2, а во втором - только 8,6 Гкал/м2, т.е. в 2,6 раза больше. Аналогичный результат можно получить, просто сравнив материальные характеристики участков тепловой сети.

Вообще же ошибка, при определении потерь тепла при транспорте теплоносителя на конкретном участке ТС по сравнению со средним значением, может быть очень большой.

В табл. 1 представлены результаты обследования 5 участков ТС г. Тюмень (кроме расчетов нормативных потерь тепла, нами также были выполнены измерения фактических тепловых потерь с поверхности изоляции трубопроводов, см. ниже). Первый участок представляет собой магистральный участок ТС с большими диаметрами трубопровода

и соответственно большими расходами теплоносителя. Все остальные участки ТС - тупиковые. Потребителями ТЭ на втором и третьем участке являются 2-х и 3-этажные здания, расположенные по двум параллельным улицам. Четвертый и пятый участки также имеют общую тепловую камеру, но если в качестве потребителей на четвертом участке имеются компактно расположенные относительно крупные четырех-и пятиэтажные дома, то на пятом участке - это частные одноэтажные дома, расположенные вдоль одной протяженной улицы.

Как видно из табл. 1, относительные реальные потери тепла на обследованных участках трубопроводов зачастую составляют почти половину от переданного тепла (участки № 2 и № 3). На участке № 5, где расположены частные дома, более 70% тепла теряется в окружающую среду, несмотря на то, что коэффициент превышения абсолютных потерь над нормативными значениями примерно такой же, как на остальных участках. Наоборот, при компактном расположении относительно крупных потребителей, потери тепла резко снижаются (участок № 4). Средняя скорость теплоносителя на этом участке составляет 0,75 м/с. Все это приводит к тому, что фактические относительные тепловые потери на этом участке более чем в 6 раз ниже, чем на остальных тупиковых участках, и составили всего 7,3%.

С другой стороны, на участке № 5 скорость теплоносителя в среднем составляет 0,2 м/с, причем на последних участках теплосети (в таблице не показано) из-за больших диаметров трубы и малых значений расходов теплоносителя она составляет всего 0,1-0,02 м/с. С учетом относительно большого диаметра трубопровода, а следовательно, и поверхности теплообмена, в грунт уходит большое количество тепла.

При этом надо иметь в виду, что количество тепла, теряемое с поверхности трубы, практически не зависит от скорости движения сетевой воды, а зависит только от ее диаметра, температуры теплоносителя и состояния изоляционного покрытия. Однако относительно количества передаваемого по трубопроводам тепла,

тепловые потери напрямую зависят от скорости теплоносителя и резко возрастают при ее снижении. В предельном случае, когда скорость теплоносителя составляет сантиметры в секунду, т.е. вода практически стоит в трубопроводе, большая часть ТЭ может теряться в окружающую среду, хотя потери тепла могут и не превышать нормативные.

Таким образом, величина относительных тепловых потерь зависит от состояния изоляционного покрытия, и в значительной степени определяется также протяженностью ТС и диаметром трубопровода, скоростью движения теплоносителя по трубопроводу, тепловой мощностью присоединенных потребителей. Поэтому наличие в системе теплоснабжения мелких, удаленных от источника потребителей ТЭ может привести к росту относительных тепловых потерь на многие десятки процентов. Наоборот, в случае компактной ТС с крупными потребителями, относительные потери могут составлять считанные проценты от отпущенного тепла. Все это следует иметь в виду при проектировании систем теплоснабжения. Например, для рассмотренного выше участка № 5, возможно, более экономично было бы в частных домах установить индивидуальные газовые теплогенераторы.

В приведенном выше примере нами были определены, наряду с нормативными, фактические потери тепла с поверхности изоляции трубопроводов. Знание реальных тепловых потерь очень важно, т.к. они, как показал опыт, могут в несколько раз превышать нормативные значения. Такая информация позволит иметь представление о фактическом состоянии тепловой изоляции трубопроводов ТС, определить участки с наибольшими тепловыми потерями и рассчитать экономическую эффективность замены трубопроводов. Кроме того, наличие такой информации позволит обосновать реальную стоимость 1 Гкал отпущенного тепла в региональной энергетической комиссии. Однако, если тепловые потери, связанные с утечкой теплоносителя, можно определить по фактической подпитке ТС при наличии соответствующих данных на источнике ТЭ, а при их отсутствии рассчитать их нормативные значения, то определение реальных потерь тепла с поверхности изоляции трубопроводов является весьма трудной задачей.

В соответствии с для определения фактических тепловых потерь на испытываемых участках двухтрубной водяной ТС и сравнения их с нормативными значениями, должно быть организовано циркуляционное кольцо, состоящее из прямого и обратного трубопроводов с перемычкой между ними. Все ответвления и отдельные абоненты должны быть от него отсоединены, а расход на всех участках ТС должен быть одинаков. При этом минимальный объем испытываемых участков по материальной характеристике должен быть не менее 20% материальной характеристики всей сети, а перепад температур теплоносителя должен составлять не менее 8 ОС. Таким образом, должно образоваться кольцо большой протяженности (несколько километров).

Учитывая практическую невозможность проведения испытаний по данной методике и выполнения ряда ее требований, в условиях отопительного периода, а также сложность и громоздкость, нами предложена и с успехом много лет используется методика тепловых испытаний, основанная на простых физических законах теплопередачи. Суть ее заключается в том, что, зная снижение («сбег») температуры теплоносителя в трубопроводе от одной точки измерения до другой при известном и неизменном его расходе, легко вычислить потерю тепла на данном участке ТС. Затем при конкретных температурах теплоносителя и окружающей среды в соответствии с полученные значения тепловых потерь пересчитываются на среднегодовые условия и сравниваются с нормативными, также приведенными к среднегодовым условиям для данного региона с учетом температурного графика теплоснабжения. После этого определяется коэффициент превышения фактических потерь тепла над нормативными значениями.

Измерение температуры теплоносителя

Учитывая очень малые значения перепада температур теплоносителя (десятые доли градуса), повышенные требования предъявляются как к измерительному прибору (шкала должна быть с десятыми долями ОС), так и тщательности самих измерений. При измерении температуры поверхность труб должна быть зачищена от ржавчины, а трубы в точках проведения измерений (на концах участка) желательно иметь одного диаметра (одинаковой толщины). С учетом вышесказанного температура теплоносителей (прямого и обратного трубопроводов) должна измеряться в местах разветвления ТС (обеспечение постоянного расхода), т.е. в тепловых камерах и колодцах.

Измерение расхода теплоносителя

Расход теплоносителя должен быть определен на каждом из неразветвленных участков ТС. При проведении испытаний иногда удавалось использовать портативный ультразвуковой расходомер. Сложность непосредственного измерения расхода воды прибором связана с тем, что чаще всего обследуемые участки ТС расположены в непроходных подземных каналах, а в тепловых колодцах, из-за расположенной в нем запорной арматуры, не всегда возможно соблюсти требование, касающееся необходимых длин прямолинейных участков до и после места установки прибора. Поэтому для определения расходов теплоносителя на обследуемых участках теплотрассы наряду с непосредственными измерениями расходов в некоторых случаях использовались данные с теплосчетчиков, установленных на зданиях, присоединенных к этим участкам сети. При отсутствии в здании теплосчетчиков расходы воды в подающем или обратном трубопроводах измерялись переносным расходомером на вводе в здания.

В случае невозможности непосредственно измерить расход сетевой воды для определения расходов теплоносителя использовались расчетные его значения.

Таким образом, зная расход теплоносителя на выходе из котельных, а также на других участках, включая здания, присоединенные к обследуемым участкам теплосети, можно определить расходы практически на всех участках ТС.

Пример использования методики

Следует также отметить, что проще всего, удобнее и точнее проводить подобное обследование при наличии теплосчетчиков у каждого потребителя или хотя бы у большинства. Лучше, если теплосчетчики имеют часовой архив данных. Получив с них необходимую информацию, легко определить как расход теплоносителя на любом участке ТС, так и температуру теплоносителя в ключевых точках с учетом того, что, как правило, здания расположены в непосредственной близости от тепловой камеры или колодца. Таким образом, нами были выполнены расчеты тепловых потерь в одном из микрорайонов г. Ижевска без выезда на место. Результаты получились примерно такими же, как и при обследовании ТС в других городах со сходными условиями - температурой теплоносителя, срока эксплуатации трубопроводов и др.

Многократные измерения фактических тепловых потерь с поверхности изоляции трубопроводов ТС в различных регионах страны указывают на то, что потери тепла с поверхности трубопроводов, находящиеся в эксплуатации 10-15 и более лет, при прокладке труб в непроходных каналах в 1,5-2,5 раза превышают нормативные значения. Это в случае, если нет видимых нарушений изоляции трубопровода, отсутствует вода в лотках (по крайней мере, во время проведения измерений), а также косвенных следов ее пребывания, т.е. трубопровод находится в видимом нормальном состоянии. В случае же, когда вышеуказанные нарушения присутствуют, фактические потери тепла могут превысить нормативные значения в 4-6 и более раз.

В качестве примера приведены результаты обследования одного из участков ТС, теплоснабжение по которому осуществляется от ТЭЦ г. Владимира (табл. 2) и от котельной одного из микрорайонов этого города (табл. 3). Всего в процессе работы было обследовано около 9 км теплотрассы из 14 км, которые планировались к замене на новые, предварительно изолированные трубы в пенополиуретановой оболочке. Замене подлежали участки трубопроводов, теплоснабжение по которым осуществляется от 4 муниципальных котельных и от ТЭЦ.

Анализ результатов обследования показывает, что потери тепла на участках с теплоснабжением от ТЭЦ в 2 раза и более превышают тепловые потери на участках теплосети, относящихся к муниципальным котельным. В значительной степени это связано с тем, что срок службы их зачастую составляет 25 лет и более, что на 5-10 лет больше срока службы трубопроводов, теплоснабжение по которым осуществляется от котельных. Второй причиной лучшего состояния трубопроводов, на наш взгляд, является то, что протяженность участков, обслуживаемых работниками котельной, относительно небольшая, расположены они компактно и руководству котельных проще следить за состоянием теплосети, вовремя обнаруживать утечки теплоносителя, проводить ремонтные и профилактические работы. На котельных имеются приборы для определения расхода подпиточной воды, и в случае заметного увеличения расхода «подпитки» можно обнаружить и устранить образовавшиеся утечки.

Таким образом, наши измерения показали, что предназначенные к замене участки ТС, особенно участки, присоединенные к ТЭЦ, действительно находятся в плохом состоянии в отношении повышенных потерь тепла с поверхности изоляции. В тоже время анализ результатов подтвердил полученные при других обследованиях данные об относительно невысоких скоростях теплоносителя (0,2-0,5 м/с) на большинстве участков ТС. Это приводит, как отмечено выше, к увеличению тепловых потерь и если может быть как-то оправданным при эксплуатации старых трубопроводов, находящихся в удовлетворительном состоянии, то при модернизации ТС (в большинстве своем) необходимо уменьшение диаметра заменяемых труб. Это тем более важно с учетом того, что предполагалось при замене старых участков ТС на новые использовать предварительно изолированные трубы (того же диаметра), что связано с большими затраты (стоимость труб, запорной арматуры, отводов и т.д.), поэтому уменьшение диаметра новых труб до оптимальных значений может существенно снизить общие затраты.

Изменение диаметров трубопроводов требует проведения гидравлических расчетов всей ТС.

Такие расчеты были выполнены применительно к ТС четырех муниципальных котельных, которые показали, что из 743 участков сети на 430 могут быть существенно снижены диаметры труб. Граничными условиями проведения расчетов были неизменный располагаемый напор на котельных (замена насосов не предусматривалась) и обеспечение напора у потребителей не менее 13 м. Экономический эффект только от снижения стоимости самих труб и запорной арматуры без учета остальных составляющих - стоимости оборудования (отводы, компенсаторы и т.д.), а также снижения потерь тепла из-за уменьшения диаметра трубы составил 4,7 млн руб.

Проведенные нами измерения потерь тепла на участке ТС одного из микрорайонов г. Оренбурга после полной замены труб на новые предварительно изолированные в пенополиуретано-вой оболочке, показали, что тепловые потери стали на 30% ниже нормативных.

Выводы

1. При проведении расчетов потерь тепла в ТС необходимо определять нормативные потери для всех участков сети в соответствии с разработанной методикой .

2. При наличии мелких и удаленных потребителей потери тепла с поверхности изоляции трубопроводов могут быть очень большими (десятки процентов), поэтому необходимо рассмотреть целесообразность альтернативного теплоснабжения данных потребителей.

3. Помимо определения нормативных тепловых потерь при транспорте теплоносителя по

ТС необходимо определить на отдельных характерных участках ТС фактические потери, что позволит иметь реальную картину ее состояния, обоснованно выбирать участки, требующие замены трубопроводов, точнее рассчитывать стоимость 1 Гкал тепла.

4. Практика показывает, что скорости теплоносителя в трубопроводах ТС часто имеют низкие значения, что приводит к резкому увеличению относительных потерь тепла. В таких случаях при проведении работ, связанных с заменой трубопроводов ТС, следует стремиться к уменьшению диаметра труб, что потребует проведения гидравлических расчетов и наладки ТС, но позволит существенно снизить затраты на приобретение оборудования и значительно уменьшить потери тепла при эксплуатации ТС. Особенно это актуально при использовании современных предварительно изолированных труб. На наш взгляд близкими к оптимальным являются скорости теплоносителя 0,8-1,0 м/с.

[email protected]

Литература

1. «Методика определения потребности в топливе, электрической энергии и воде при производстве и передаче тепловой энергии и теплоносителей в системах коммунального теплоснабжения», Государственный комитет РФ по строительству и жилищно-коммунальному хозяйству, Москва. 2003, 79 с.

В.Л. Звягинцев, главный инженер Сумского государственного университета, г. Сумы, Украина.

Занимаясь вопросами теплоснабжения автору данной статьи неоднократно доводилось сталкиваться с различной регламентирующей документацией в этой сфере, в том числе с самым солидным и профессиональным документом - КТМ - 204 Украины 244-94 «Нормы и указания по нормированию затрат топлива и тепловой энергии на отопление жилых и общественных зданий, а также на хозяйственно бытовые потребности Украины.»

Автор критиковал несовершенство документа КТМ - 204 Украины 244-94 по двум вопросам, по причине отсутствия примера по использованию таблицы 7.1, стр.76-105 и отсутствие четкого примера по использованию пункта 3.1.8. стр. 41 для определения тепловых потерь в тепловых сетях.

Приведенные ниже примеры эти секреты раскрывают, они важны при разработке тарифов на тепловую энергию, для проведения энергоаудита теплоснабжающих предприятий, для разработки тепловых схем населенных пунктов, для системного расчета реализованной тепловой энергии и тепловых нагрузок жилых домов в сложившихся условиях, когда часть квартир в домах отключилось от центрального отопления. И, наконец, настоящая статья и примеры раскрывают теорию вопроса в деталях, поэтому читателя ожидают интересные выводы и факты.

ПРИМЕР 1.

Методика определяет реализованную тепловую энергию в тепловой сети по табличным значениям для г.Глухова Сумской области. Расчет ведется в соответствии с методикой КТМ - 204 Украины 244-94 (таблица 7.1)

В представленных расчетах значение общей отапливаемой площади здания складывается из двух составных:

Fобщ. = Fпол. + Fкомм,

где Fпол. - расчетная полезная отапливаемая площадь квартир, м2 (смотри технические паспорта на жилые дома);

Fкомм - расчетная коммунальная отапливаемая площадь помещений общего пользования в жилом доме (смотри технические паспорта на жилые дома).

Определение объемов реализованной тепловой энергии и тепловой нагрузки для жилых домов:

Qреал. = (Fпол. + Fкомм.) х Kуд., (Гкалчас)

где Куд. - коэффициент, который учитывает удельную плановую нагрузку на 1 м2 площади в год, Гкалм2*год (смотри таблица 7.1.)

Реализованная тепловая энергия на проектную площадь равняется 23656,0 Гкал/год, в том числе на коммунальное отопление 6410,1 х 0,19570 = 1254,5 Гкалгод, на отопление полезной площади квартир 23656,0 - 1254,5 = 22401,5 Гкалгод.

Подключенная тепловая нагрузка на отопление жилых домов определяется:

Qподкл. = / , Гкал/час

где Qреал. - реализованная тепловая энергия за отопительный сезон (за год) на отопление, Гкал;

tв. - внутренняя расчетная температура воздуха в помещениях здания, принимается +20оС (смотри ДСТУ - НБВ.1.1-27:2010 Строительная климатология. - действует от 01.01.2010);

tн.р. - наружная расчетная температура воздуха, принимается -25оС (смотри ДСТУ - НБВ.1.1-27:2010 Строительная климатология. - действует от 01.01.2010);

24 - количество часов в сутках;

nсут. - количество дней отопительного сезона (смотри ДСТУ - НБВ.1.1-27:2010 Строительная климатология. - действует от 01.01.2010)

tср. - наружная средняя расчетная температура воздуха за отопительных сезон, принимаем -1,4 оС (смотри ДСТУ - НБВ.1.1-27:2010 Строительная климатология. - действует от 01.01.2010).

Таблица.1 Результаты расчета суммарной тепловой нагрузки жилых домов.

Qподкл. = (23656,0 х 45)/(24 х 187 х 21,4) = 11,084 Гкал/час

Qподкл.ком. = (1254,5 х 45)/(24 х 187 х 21,4) = 0,588 Гкал/час

Qs = Qподкл. / F, Гкал/м2

За отопительный сезон Qs.общ. = 23656 / 120876,6 = 0,19570 Гкал/м2;

За отопительный сезон Qs.ком. = 1254,5 / 114466,6 = 0,01096 Гкалм2;

За отопительный сезон Qs.пол. = 22401,5 / 114466,6 = 0,19570 Гкал/м2;

За сутки Qs.сут. = 0,19570 /187 = 0,001046 Гкал/м2;

За час Qs.час = 0,001046 / 24 = 0,0000436 Гкал/м2.

Для определения средней нормативной тепловой нагрузки брались величины отапливаемой площади, которые были уточнены при проведении энергетического обследования.

Реализованная тепловая энергия отапливаемых площадей, которые остались на центральном отоплении, равняются 18450,6 Гкал/год, в том числе на коммунальное отопление 6410 х 0,19844 = 1272,0 Гкал/год, на отопление полезной площади квартир 18450,6 - 1272,0 = 1717,6 Гкал/год.

Qподкл. = (18450,6 х 45) / (24 х 187 х 21,4) = 8,645 Гкал /час

Qподкл.ком. = (1272,0 х 45)/(24 х 187 х 21,4) = 0,596 Гкал/час

Нормы затрат тепловой энергии на 1 м2 отапливаемой площади для населения:

Qs = Qподкл. / F, Гкал/м2

За отопительный сезон Qs.общ. = 18450,6 / 92977,0 = 0,19844 Гкал/м2;

За отопительный сезон Qs.ком. = 1272,0 / 114466,6 = 0,01111 Гкалм2;

За отопительный сезон Qs.пол. = 17178,6 / 86566,9 = 0,19844 Гкал/м2;

За сутки Qs.сут. = 0,19844 /187 = 0,001061 Гкал/м2;

За час Qs.час = 0,001061 / 24 = 0,0000442 Гкал/м2.

Таблица.2 Результаты расчета суммарной тепловой нагрузки жилых домов, по площади, которая осталась.

ПРИМЕР 2

Расчет тепловых потерь в тепловых сетях ведется согласно методики, определенной в п.3.1.8 стр.41 КТМ -204 Украины 244-94.

Методика в КТМ -204 Украины 244-94 определяет средние потери тепловой энергии в тепловых сетях.

Для определения среднего значения тепловых потерь в тепловой сети, автор предлагает рассчитывать эту величину по среднему потребителю магистрали, а именно, определение радиуса до балансовой средней тепловой нагрузки (Rб.с.т.н.) системы теплоснабжения источника (котельная, ТЭЦ) по формуле:

Rб.с.т.н = ∑Qподкл. / 2, Гкал/час,

∑ Rб.с.т.н = 11,084 / 2 = 5,542 Гкал/час

где Rб.с.т.н - расстояние от источника до потребителя, сумма подключенной тепловой нагрузки которого была прибавлена последней до величины 5,542 Гкал/час по длине магистрального и распределительного подающего трубопровода;

∑Qподкл. - сумма проектных (фактических) тепловых нагрузок потребителей источника, Гкал/час.

Rб.с.т.н. в реальности протяженности тепловой сети магистрали равно 1200 м.

Согласно п. 3.1.8 стр.41 КТМ -204 Украины 244-94 и разработанной автором таблицы 3 полученный результат соответствует тепловым потерям 5,4 %.

Таблица 3. Удельные и тепловые потери в водяных тепловых сетях.

Длина тепл. сети,

Тепловые Lм,Rб.с.т.н.

Сотни метров, n = L/100м
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Удельные потери,qуд. 0,7 0,64 0,63 0,60 0,58 0,57 0,55 0,53 0,52 0,48 0,47 0,45 0,43 0,42 0,40
Тепловые потери, qт.п. 0,7 1,3 1,9 2,4 2,9 3,4 3,9 4,2 4,7 4,8 5,2 5,4 5,6 5,9 6,0
Длина тепл. сети,

Тепловые Lм,Rб.с.т.н.

Сотни метров, n = L/100м
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Удельные потери,qуд. 0,38 0,36 0,34 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32
Тепловые потери, qт.п. 6,1 6,1 6,1 6,1 6,4 6,7 7,0 7,4 7,7 8,0 8,3 8,6 9,0 9,3 9,6
Длина тепл. сети,

Тепловые Lм,Rб.с.т.н.

Сотни метров, n = L/100м
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Удельные потери,qуд. 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,31 0,30 0,29 0,29
Тепловые потери, qт.п. 9,9 10,2 10,6 10,9 11,2 11,5 11,8 12,2 12,5 12,8 13,0 13,0 13,0 13,0 13,0
Длина тепл. сети,

Тепловые Lм,Rб.с.т.н.

Сотни метров, n = L/100м
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Удельные потери,qуд. 0,28 0,28 0,27 0,27 0,26 0,26 0,25 0,25 0,24 0,24 0,23 0,23 0,22 0,22 0,22
Тепловые потери, qт.п. 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0

Таблица 3 имеет продолжение. По данным таблицы 3 можно построить график удельных потерь и график тепловых потерь в водяных тепловых сетях.

График удельных и тепловых потерь в водяных тепловых сетях.

Особенности предлагаемого графика удельных тепловых потерь и графика тепловых потерь в водяных теплових сетях:

- График совпадает с цифрами КТМ -204 Украины 244-94 в следующих точках:

до 500 м - 2,9 %; до 1000 м - 4,8%; максимальне тепловые потери - 13%.

График имеет не одну а две кривые: удельных теплових потер и теплових потер на каждые 100 м водяной тепловой сети.

Кривая теплових потерь идет на увеличение и имеет одну точку излома на расстоянии 4,1 км, где тепловые потери в водяной тепловой сети достигают 13% и дальше не увеличиваются и не уменьшаются.

Кривая графика удельных теплових потер не совпадает с величинами, указанными в КТМ -204 Украины 244-94, где на расстоянии 1000 м удельные тепловые потери составляют 0,48% и скачком не могут энергетически быстро вырасти до 0,6%, на самом деле удельные тепловые потери продолжают уменьшаться до расстояния 1,9 км до 0,32%, где график имеет первую точку излома на относительно горизонтальную кривую. Другая точка излома графика имеет место на расстоянии 4,1 км, где удельные тепловые потери начинают снова уменьшаться. График удельных тепловых потерь в бесконечности не пересекает ось нуля, поэтому график тепловых потерь в водяных тепловых сетях далее не увеличивается и составляет 13% по формуле qт.п. = n х qуд., при условии

n = Lтепловой сети / 100 м.

ВЫВОДЫ:

1. Сегодня тепловые потери в водяных теплових сетях рекомендуется рассчитывать по «Методическим указаним по определению теплових потер в водяных теплових сетях» - РД 34.09.25 от 01.01.1998года.

С точки зрения автора оба расчета теплових потерь в водяных теплових сетях пока имеют право на жизнь, но предлагаемый способ рассчета ясен и краток на базе КТМ -204 Украины 244-94, а рассчет на базе РД 34.09.25 от 01.01.1998года очень громоздкий, поэтому приводит к не объективной оценке в большую сторону в два и болем раза.

Положения РД 34.09.25 от 01.01.1998года были известны и ранее (смотри, например, В.И.Манюк и другие «Справочник по наладке и эксплуатации водяных теплових сетей», Москва, Стройиздат, 1982 год), однако в КТМ -204 Украины 244-94 и предшествующих документах СССР эта версия не нашла применения. Очевидно, по причинам того, что инстументальные замеры для заполнения таблиц РД 34.09.25 от 01.01.1998года выполнялись десятки лет назад приметивными приборами. Содержание РД 34.09.25 от 01.01.1998года противоречиво по принципиальным вопросам. Например, в формуле 7 удельные тепловые потери через тепловую изоляцию трубопровода водяной тепловой сети измеряются в Вт/м или Ккал/(м*час), те же единицы стоят в таблицях 1 и 2 в Вт/м2 или Ккал/(м2*час). Таблицы 3,4,5 плотности теплового потока только усложняют и запутывают и до того уже сложные расчеты по формуле 7. По устаревшим данням таблицы 4 можно сделать вывод, что современная тепловая изоляция трубопроводов при бесканальной прокладке уступает примерно в два раза тепловым потерям через тепловую изоляцию в водяных трубопроводах со старой изоляцией в непроходных каналах и надземной (воздушной) прокладке.

2. Предлагаемая усовершенствованная простая методика (пример 2) на базе КТМ -204 Украины 244-94 расчета тепловых потерь в водяных тепловых сетях утверждает и доказывает, что в водяных тепловых сетях потери тепловой энергии не превышают 13% независимо от тепловой мощности источника.

3. Вместе с тем, предлагаемая методика (пример 1) на базе КТМ -204 Украины 244-94 утверждает и доказывает, что большие и иногда основные тепловые потери тепловой энергии в системе теплоснабжения источника находятся внутри отапливаемых зданий, например, в виде потребленной коммунальной тепловой энергии в жилых домах в объемах от 8 до 19%, расходуемых на отопление холлов, лестничных площадок, коридоров вне квартир, площадок мусоропроводов, лифтовых шахт, помещений колясочных и т.д .

4. Наряду с устранением теплових потерь в водяных теплових сетях необходимо равноценно устранять коммунальные тепловые потери в отапливаемых жилых домах, даже когда в доме установлен тепловой счетчик, который учитывает и потребление коммунальной тепловой энергии.

Расчет теплопотерь дома - основа отопительной системы . Он нужен, как минимум, чтобы правильно подобрать котёл. Также можно прикинуть, сколько денег будет уходить на отопление в планируемом доме, провести анализ финансовой эффективности утепления т.е. понять окупятся ли затраты на монтаж утепления экономией топлива за срок службы утеплителя. Очень часто подбирая мощность отопительной системы помещения, люди руководствуются средним значением в 100 Вт на 1 м 2 площади при стандартной высоте потолков до трех метров. Однако, не всегда эта мощность достаточна для полного восполнения теплопотерь. Здания различаются по составу строительных материалов, их объему, нахождению в разных климатических зонах и т.д. Для грамотного расчета теплоизоляции и подбора мощности отопительных систем необходимо знать о реальных теплопотерях дома. Как их рассчитать - расскажем в этой статье.

Основные параметры для расчета теплопотерь

Теплопотери любого помещения зависят от трех базовых параметров:

  • объем помещения – нас интересует объем воздуха, который необходимо отопить
  • разницу температуры внутри и снаружи помещения – чем больше разница тем быстрее происходит теплообмен и воздух теряет тепло
  • теплопроводность ограждающих конструкций – способность стен, окон удерживать тепло

Самый простой рассчет теплопотерь

Qт (кВт/час)=(100 Вт/м2 x S (м2) x K1 x K2 x K3 x K4 x K5 x K6 x K7)/1000

Данная формула расчета теплопотерь по укрупненным показателям, в основе которых лежат усредненные условия 100 Вт на 1кв метр. Где основными рассчетными показателями для расчета системы отопления являются следующие величины:

- тепловая мощность предполагаемого отопителя на отработанном масле, кВт/час.

100 Вт/м2 - удельная величина тепловых потерь (65-80 ватт/м2). В нее входят утечки тепловой энергии путем ее поглощения оконами, стенами, потолком полом; утечки через вентиляцию и негерметичности помещения и другие утечки.

S - площадь помещения;

K1 - коэффициент теплопотерь окон:

К2 - коэффициент теплопотерь стен:

  • плохая теплоизоляция К2=1,27
  • стена в 2 кирпича или утеплитель 150 мм толщиной К2=1,0
  • хорошая теплоизоляция К2=0,854

К3 коэффициент соотношения площадей окон и пола:

  • 10% К3=0,8
  • 20% К3=0,9
  • 30% К3=1,0
  • 40% К3=1,1
  • 50% К3=1,2;

K4 - коэффициент наружной температуры:

  • -10oC K4=0,7
  • -15oC K4=0,9
  • -20oC K4=1,1
  • -25oC K4=1,3
  • -35oC K4=1,5;

K5 - число стен, выходящих наружу:

  • одна - К5=1,1
  • две К5=1,2
  • три К5=1,3
  • четыре К5=1,4;

К6 - тип помещения, которое находится над расчитываемым:

  • холодный чердак К6=1,0
  • теплый чердак К6=0,9
  • отапливаемое помещение К6-0,8;

K7 - высота помещения:

  • 2,5 м К7=1,0
  • 3,0 м К7=1,05
  • 3,5 м К7=1,1
  • 4,0 м К7=1,15
  • 4,5 м К7=1,2.

Упрощенный рассчет теплопотерь дома

Qт = (V x ∆t x k)/860; (кВт)

V - объем помещения (куб.м)
∆t - дельта температур (уличной и в помещении)
k - коэффициент рассеивания

  • k= 3,0-4,0 – без теплоизоляции. (Упрощенная деревянная конструкция или конструкция из гофрированного металлического листа).
  • k= 2,0-2,9 – небольшая теплоизоляция. (Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши).
  • k= 1,0-1,9 – средняя теплоизоляция. (Стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей).
  • k= 0,6-0,9 – высокая теплоизоляция. (Улучшенная конструкция, кирпичные стены с двойной теплоизоляцией, небольшое количество окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала).

В данной формуле очень условно учитываются коэффициент рассеивания и не совсем понятно каким коэффициентами пользоваться. В классике редкое современное, выполненное из современных материалов с учетом действующих стандартов, помещение обладает ограждающими конструкциями с коэффициентом рассеивания более одного. Для более детального понимания методики расчёта предлагаем следующие более точные методики.

Сразу же акцентирую ваше внимание на то, что ограждающие конструкции в основном не являются однородными по структуре, а обычно состоят из нескольких слоёв. Пример: стена из ракушника = штукатурка + ракушник + наружная отделка. В эту конструкцию могут входить и замкнутые воздушные прослойки (пример: полости внутри кирпичей или блоков). Вышеперечисленные материалы имеют отличающиеся друг от друга теплотехнические характеристики. Основной такой характеристикой для слоя конструкции является его сопротивление теплопередачи R .

q – это количество тепла, которое теряет квадратный метр ограждающей поверхности (измеряется обычно в Вт/м.кв.)

ΔT - разница между температурой внутри рассчитываемого помещения и наружной температурой воздуха (температура наиболее холодной пятидневки °C для климатического района в котором находится рассчитываемое здание).

В основном внутренняя температура в помещениях принимается:

Когда речь идёт о многослойной конструкции, то сопротивления слоёв конструкции складываются. Отдельно хочу акцентировать ваше внимание на расчётном коэффициенте теплопроводности материала слоя λ Вт/(м°С) . Так как производители материалов чаще всего указывают его. Имея расчётный коэффициент теплопроводности материала слоя конструкции мы легко можем получить сопротивление теплопередачи слоя :

δ - толщина слоя, м;

λ - расчётный коэффициент теплопроводности материала слоя конструкции, с учетом условий эксплуатации ограждающих конструкций, Вт / (м2 оС).

Итак для расчёта тепловых потерь через ограждающие конструкции нам нужны:

1. Сопротивление теплопередачи конструкций (если конструкция многослойная то Σ R слоёв) R
2. Разница между температурой в расчётном помещении и на улице (температура наиболее холодной пятидневки °C.). ΔT
3. Площади ограждений F (Отдельно стены, окна, двери, потолок, пол)
4. Ориентация здания по отношению к сторонам света.

Формула для расчёта теплопотерь ограждением выглядит так:

Qогр=(ΔT / Rогр)* Fогр * n *(1+∑b)

Qогр - тепло потери через ограждающие конструкции, Вт
Rогр – сопротивление теплопередаче, м.кв.°C/Вт; (Если несколько слоёв то ∑ Rогр слоёв)
Fогр – площадь ограждающей конструкции, м;
n – коэффициент соприкосновения ограждающей конструкции с наружным воздухом.

Тип ограждающей конструкции

Коэффициент n

1. Наружные стены и покрытия (в том числе вентилируемые наружным воздухом), перекрытия чердачные (с кровлей из штучных материалов) и над проездами; перекрытия над холодными (без ограждающих стенок) подпольями в Северной строительно-климатической зоне

2. Перекрытия над холодными подвалами, сообщающимися с наружным воздухом; перекрытия чердачные (с кровлей из рулонных материалов); перекрытия над холодными (с ограждающими стенками) подпольями и холодными этажами в Северной строительно-климатической зоне

3. Перекрытия над не отапливаемыми подвалами со световыми проемами в стенах

4. Перекрытия над не отапливаемыми подвалами без световых проемов в стенах, расположенные выше уровня земли

5. Перекрытия над не отапливаемыми техническими подпольями, расположенными ниже уровня земли

(1+∑b) – добавочные потери теплоты в долях от основных потерь. Добавочные потери теплоты b через ограждающие конструкции следует принимать в долях от основных потерь:

а) в помещениях любого назначения через наружные вертикальные и наклонные (вертикальная проекция) стены, двери и окна, обращенные на север, восток, северо-восток и северо-запад - в размере 0,1, на юго-восток и запад - в размере 0,05; в угловых помещениях дополнительно - по 0,05 на каждую стену, дверь и окно, если одно из ограждений обращено на север, восток, северо-восток и северо-запад и 0,1 - в других случаях;

б) в помещениях, разрабатываемых для типового проектирования, через стены, двери и окна, обращенные на любую из сторон света, в размере 0,08 при одной наружной стене и 0,13 для угловых помещений (кроме жилых), а во всех жилых помещениях - 0,13;

в) через не обогреваемые полы первого этажа над холодными подпольями зданий в местностях с расчетной температурой наружного воздуха минус 40 °С и ниже (параметры Б) - в размере 0,05,

г) через наружные двери, не оборудованные воздушными или воздушно-тепловыми завесами, при высоте зданий Н, м, от средней планировочной отметки земли до верха карниза, центра вытяжных отверстий фонаря или устья шахты в размере: 0,2 Н - для тройных дверей с двумя тамбурами между ними; 0,27 H - для двойных дверей с тамбурами между ними; 0,34 H - для двойных дверей без тамбура; 0,22 H - для одинарных дверей;

д) через наружные ворота, не оборудованные воздушными и воздушно-тепловыми завесами, - в размере 3 при отсутствии тамбура и в размере 1 - при наличии тамбура у ворот.

Для летних и запасных наружных дверей и ворот добавочные потери теплоты по подпунктам “г” и “д” не следует учитывать.

Отдельно возьмём такой элемент как пол на грунте или на лагах. Здесь есть особенности. Пол или стена, не содержащие в своем составе утепляющих слоев из материалов с коэффициентом теплопроводности λ меньше либо равно 1,2 Вт/(м °С), называются не утепленными. Сопротивление теплопередаче такого пола принято обозначать Rн.п, (м2 оС) / Вт. Для каждой зоны не утепленного пола предусмотрены нормативные значения сопротивления теплопередаче:

  • зона I - RI = 2,1 (м2 оС) / Вт;
  • зона II - RII = 4,3 (м2 оС) / Вт;
  • зона III - RIII = 8,6 (м2 оС) / Вт;
  • зона IV - RIV = 14,2 (м2 оС) / Вт;

Первые три зоны представляют собой полосы, расположенные параллельно периметру наружных стен. Остальную площадь относят к четвертой зоне. Ширина каждой зоны равна 2 м. Начало первой зоны находится в месте примыкания пола к наружной стене. Если неутеплёный пол примыкает к стене заглублённой в грунт то начало переносится к к верхней границе заглубления стены. Если в конструкции пола, расположенного на грунте, имеются утепляющие слои, его называют утепленным, а его сопротивление теплопередаче Rу.п, (м2 оС) / Вт, определяется по формуле:

Rу.п. = Rн.п. + Σ (γу.с. / λу.с)

Rн.п - сопротивление теплопередаче рассматриваемой зоны неутепленного пола, (м2 оС) / Вт;
γу.с - толщина утепляющего слоя, м;
λу.с - коэффициент теплопроводности материала утепляющего слоя, Вт/(м·°С).

Для пола на лагах сопротивление теплопередаче Rл, (м2 оС) / Вт, рассчитывается по формуле:

Rл = 1,18 * Rу.п

Теплопотери каждой ограждающей конструкции считаются отдельно. Величина теплопотерь через ограждающие конструкции всего помещения будет сумма теплопотерь через каждую ограждающую конструкцию помещения. Важно не напутать в измерениях. Если вместо (Вт) появится (кВт) или вообще (ккал) получите неверный результат. Ещё можно по невнимательности указать Кельвины (K) вместо градусов Цельсия (°C).

Продвинутый рассчет теплопотерь дома

Отопление в гражданских и жилых зданиях теплопотери помещений состоят из теплопотерь через различные ограждающие конструкции, такие как окна, стены, перекрытия, полы а также теплорасходов на нагревание воздуха, который инфильтрируется сквозь неплотности в защитных сооружениях (ограждающих конструкциях) даного помещения. В промышленных зданиях существуют и другие виды теплопотерь. Расчет теплопотерь помещения производится для всех ограждающих конструкций всех отапливаемых помещений. Могут не учитываться теплопотери через внутренние конструкции, при разности температуры в них с температурой соседних помещений до 3С. Теплопотери через ограждающие конструкции расчитываются по следующей формуле, Вт:

Qогр = F (tвн – tнБ) (1 + Σ β) n / Rо

tнБ – темп-ра наружного воздуха, оС;
tвн – темп-ра в помещении, оС;
F – площадь защитного сооружения, м2;
n – коэффициент, который учитывает положение ограждения или защитного сооружения (его наружной поверхности) относительно наружного воздуха;
β – теплопотери добавочные, доли от основных;
– сопротивление теплопередаче, м2·оС / Вт, которое определяется по следующей формуле:

Rо = 1/ αв + Σ (δі / λі) + 1/ αн + Rв.п., где

αв – коэффициент тепловосприятия ограждения (его внутренней поверхности), Вт/ м2· о С;
λі и δі – расчетный коэффициент теплопроводности для материала данного слоя конструкции и толщина этого слоя;
αн – коэффициент теплоотдачи ограждения (его наружной поверхности), Вт/ м2· о С;
Rв.n – в случае наличия в конструкции замкнутой воздушной прослойки, ее термосопротивление, м2· о С / Вт (см. табл.2).
Коэф-ты αн и αв принимаются согласно СНиП а для некоторых случаев приведены в таблице 1;
δі – обычно назначается согласно заданию или определяется по чертежах ограждающих конструкций;
λі – принимается по справочникам.

Таблица 1. Коэффициенты тепловосприятия αв и теплоотдачи αн

Поверхность ограждающей конструкции

αв, Вт/ м2· о С

αн, Вт/ м2· о С

Поверхность внутренняя полов, стен, гладких потолков

Поверхность наружная стен, бесчердачных перекрытий

Перекрытия чердачные и перекрытия над подвалами неотапливаемыми со световыми проемами

Перекрытия над подвалами неотапливаемыми без световых проемов

Таблица 2. Сопротивление термическое замкнутых воздушных прослоек Rв.n, м2· о С / Вт

Толщина прослойки воздушной, мм

Горизонтальная и вертикальная прослойки при тепловом потоке снизу вверх

Прослойка горизонтальная при тепловом потоке сверху вниз

При температуре в пространстве воздушной прослойки

Для дверей и окон сопротивление теплопередаче рассчитывается очень редко, а чаще принимается в зависимости от их конструкции по справочным данным и СНиПам. Площади ограждений для расчетов определяются, как правило, согласно строительных чертежей. Температуру tвн для жилых зданий выбирают из приложения і, tнБ – из приложения 2 СНиП в зависимости от расположения строительного объекта. Добавочные теплопотери указаны в табл.3, коэф-ент n – в табл.4.

Таблица 3. Добавочные теплопотери

Ограждение, его тип

Условия

Добавочные теплопотери β

Окна, двери и н аружные вертикальные стены:

ориентация на северо-запад восток, север и северо-восток

запад и юго-восток

Наружные двери, двери с тамбурами 0,2 Н без воздушной завесы при высоте строения Н, м

двери тройные с двумя тамбурами

двери двойные с тамбуром

Угловые помещения дополнительно для окон, дверей и стен

одно из ограждений ориентировано на восток, север, северо-запад или северо-восток

другие случаи

Таблица 4. Величина коэффициента n, который учитывает положение ограждения (его наружной поверхности)

Расход тепла на нагревание наружного инфильтрующегося воздуха в общественных и жилых зданиях для всех типов помещений определяется двумя расчетами. Первый расчет определяет расход тепловой энергии Qі на нагревание наружного воздуха, который поступает в і-е помещение в результате действия естественной вытяжной вентиляции. Второй расчет определяет расход тепловой энергии Qі на подогревание наружного воздуха, который проникает в данное помещение сквозь неплотности ограждений в результате ветрового и (или) теплового давлений. Для расчета принимают наибольшую величину теплопотерь из определенных по следующим уравнениям (1) и (или) (2).

Qі = 0,28 L ρн с (tвн – tнБ) (1)

L, м3/ча с – расход удаляемого наружу из помещений воздуха, для жилых зданий принимают 3 м3/час на 1 м2 площади жилых помещений, в том числе и кухни;
с удельная теплоемкость воздуха (1 кДж /(кг · оС));
ρн – плотность воздуха снаружи помещения, кг/м3.

Удельный вес воздуха γ, Н/м3, его плотность ρ, кг/м3, определяются согласно формул:

γ= 3463/ (273 +t) , ρ = γ / g , где g = 9,81 м/с2 , t , ° с– температура воздуха.

Расход теплоты на подогревание воздуха, который попадает в помещение через различные неплотности защитных сооружений (ограждений) в результате ветрового и теплового давлений, определяется согласно формулы:

Qі = 0,28 Gі с (tвн – tнБ) k, (2)

где k – коэф-ент, учитывающий встредчный тепловой поток, для раздельно-переплетных балконных дверей и окон принимается 0,8, для одинарных и парно-переплетных окон – 1,0;
Gі – расход воздуха, проникающего (инфильтрируещегося) через защитные сооружения (ограждающие конструкции), кг/ч.

Для балконных дверей и окон значение Gі определяется:

Gі = 0,216 Σ F Δ Рі 0,67 / Rи, кг/ч

где Δ Рі – разница давлений воздуха на внутренней Рвн и наружной Рн поверхностях дверей или окон, Па;
Σ F, м2 – расчетные площади всех ограждений здания;
Rи, м2· ч/кг – сопротивление воздухопроницанию даного ограждения, которое может приниматься согласно приложения 3 СНиП. В панельных зданиях, кроме этого определяется дополнительный расход воздуха, инфильтрующегося через неплотности стыков панелей.

Величина Δ Рі определяется из уравнения, Па:

Δ Рі= (H – hі) (γн – γвн) + 0,5 ρн V2 (се,n – се,р) k1 – ріnt,
где H, м – высота здания от нулевого уровня до устья вентшахты (в бесчердачных зданиях устье обычно располагается на 1 м выше крыши, а в зданиях, имеющих чердак - на 4–5м выше перекрытия чердака);
hі, м – высота от нулевого уровня до верха балконных дверей или окон, для которых проводится расчет расхода воздуха;
γн, γвн – веса удельные наружного и внутреннего воздуха;
се,рu се,n – аэродинамические коэф-ты для подветренной и наветренной поверхностей здания соответственно. Для прямоугольных зданий се,р = –0,6, се,n= 0,8;

V, м/с – скорость ветра, которую для расчета принимают согласно приложения 2;
k1 – коэффициент, который учитывает зависимость скоростного напора ветра и высоты здания;
ріnt, Па – условно-постоянное давление воздуха, которое возникает при работе вентиляции с принудительным побуждением, при расчете жилых зданий ріnt можно не учитывать, поскольку оно равно нолю.

Для ограждений высотой до 5,0м коэффициент k1равен 0,5, высотой до 10 м равен 0,65, при высоте до 20 м – 0,85, а для ограждений 20 м и выше принимается 1,1.

Общие расчетные теплопотери в помещении, Вт:

Qрасч = Σ Qогр + Quнф – Qбыт

где Σ Qогр – суммарные потери тепла через все защитные ограждения помещения;
Qинф – максимальный расход теплоты на нагревание воздуха, который инфильтрируется принятый из расчетов согласно формул (2) u (1);
Qбыт – все тепловыделения от бытовых электрических приборов, освещения, других возможных источников тепла, которые принимаются для кухонь и жилых помещений в размере 21 Вт на 1 м2 расчетной площади.

Владивосток -24.
Владимир -28.
Волгоград -25.
Вологда -31.
Воронеж -26.
Екатеринбург -35.
Иркутск -37.
Казань -32.
Калининград -18
Краснодар -19.
Красноярск -40.
Москва -28.
Мурманск -27.
Нижний Новгород -30.
Новгород -27.
Новороссийск -13.
Новосибирск -39.
Омск -37.
Оренбург -31.
Орел -26.
Пенза -29.
Пермь -35.
Псков -26.
Ростов -22.
Рязань -27.
Самара -30.
Санкт-Петербург -26.
Смоленск -26.
Тверь -29.
Тула -27.
Тюмень -37.
Ульяновск -31.

РАСЧЕТ ТЕПЛОВЫХ ПОТЕРЬ

НЕИЗОЛИРОВАННЫМИ ТРУБОПРОВОДАМИ

ПРИ НАДЗЕМНОЙ ПРОКЛАДКЕ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Введение

В настоящем документе рассмотрены особенности расчета тепловых потерь неизолированными трубопроводами тепловых сетей при надземной прокладке и предложена практическая методика выполнения расчета.

Расчет тепловых потерь изолированными трубопроводами должен выполняться в соответствии с методиками, изложенными в действующих нормативных документах /1, 2/. Характерным для данной ситуации является то, что тепловой поток в основном определяется термическим сопротивлением тепловой изоляции. При этом коэффициент теплоотдачи на наружной поверхности покровного слоя мало влияет на величину тепловых потерь и поэтому может быть принят по средним значениям.

Работа трубопровода тепловой сети без тепловой изоляции является нетиповой ситуацией, так как, согласно нормам, все теплопроводы должны иметь тепловую изоляцию во избежание значительных тепловых потерь. Именно поэтому ни в каких нормативных документах не приводятся методики расчета теплопотерь трубопроводов для данного случая.

Тем не менее, при эксплуатации тепловых сетей могут возникать и возникают ситуации, когда отдельные участки трубопроводов лишены тепловой изоляции. Для обеспечения возможности расчета потерь тепла такими трубопроводами и разработано настоящая методика. Она базируется на наиболее общих теоретических зависимостях по теплоотдаче трубопровода в условиях вынужденной конвекции, которые приводятся в учебной и справочной литературе .

В соответствии с требованием заказчика все формулы и расчетные величины приводятся не в международной системе единиц, а применительно к измерению теплопотерь в ккал/час.

1. Теоретические основы расчета тепловых потерь

неизолированными трубопроводами

при надземной прокладке

Трубопровод тепловой сети представляет из себя горизонтально расположенную нагретую трубу, обдуваемую ветром или находящуюся в спокойном воздухе. Поэтому теплоотдачу такого трубопровода можно определять по известным зависимостям с использованием коэффициента теплопередачи через стенку трубы:

Q = Fп · (Tп – Tв) / К, (1.1)

К = 1 / (1/αп + δм/λм + 1/αw), (1.2)

Q

αп

Fп

Tп

К

αп

δм

λм

αw

Tп

теплоотдача трубопровода, ккал/час;

площадь наружной поверхности трубопровода, м2;

температура наружного воздуха, °С.

коэффициент теплопередачи через стенку рассматриваемого трубопровода, ккал/(час м2 °С);

коэффициент теплоотдачи на наружной поверхности трубопровода, ккал/(час м2 °С);

толщина металлической стенки трубы, м;

теплопроводность материала стенки трубы, ккал/(ч м °С);

коэффициент теплоотдачи на внутренней поверхности трубопровода, ккал/(час м2 °С);

температура наружной поверхности трубопровода, °С;

В качестве расчетных температур следует брать средние температуры за рассматриваемый период. При этом, температуру поверхности трубопровода можно принимать равной температуре воды в трубопроводе, так как термическое сопротивление стенки трубы δм/λм и сопротивление теплоотдаче на внутренней поверхности 1/αw для чистой трубы во много раз меньше, чем сопротивление теплоотдаче на наружной поверхности 1/αп . Такое допущение позволяет значительно упростить расчет и уменьшить число необходимых исходных данных, так как тогда не требуется знать скорость воды в трубе, толщину стенки трубы, степень загрязнения стенки на внутренней поверхности. Погрешность расчета, связанная с таким упрощением, невелика и значительно меньше погрешностей, связанных с неопределенностью других расчетных величин.

Площадь наружной поверхности трубопровода определяется его длиной и диаметром:

Fп = π Dп L, (1.3)

С учетом выше изложенного выражение (1) можно преобразовать к виду:

Q = αп π Dп L (Tп – Tв), (1.4)

Наиболее важным при расчете тепловых потерь является правильное определение коэффициентов теплоотдачи на наружной поверхности трубопровода. Вопрос теплоотдачи от одиночной трубы хорошо изучен, и расчетные зависимости приводятся в учебных пособиях и справочниках по теплообмену. Согласно теории, общий коэффициент теплоотдачи определяется как сумма коэффициентов конвективной и лучистой теплоотдачи:

αп = αк + αл (1.5)

Коэффициент конвективной теплоотдачи зависит от скорости воздуха и направления потока по отношению к оси трубопровода, диаметра трубопровода, теплофизических характеристик воздуха. В общем случае выражение для определения коэффициента теплоотдачи на наружной поверхности трубопровода при поперечном обдувании потоком воздуха будет:

при ламинарном режиме движения воздуха (критерий Рейнольдса Re меньше 1000)

αк = 0,43 βφ Re0,5 λв / Dn (1.6)

При переходном и турбулентном режиме движения воздуха (критерий Рейнольдса Re равен или больше 1000)

αк = 0,216 βφ Re0,6 λв / Dn , (1.7)

Re = U β u Dn / v в , (1.8)

U

βu

расчетная скорость движения воздуха;

поправочный коэффициент, учитывающий высоту расположения трубопровода над землей и характер рельефа местности.

7. Определяем коэффициент лучистой теплоотдачи:

αл = 4,97 εп (((Tп + 273)/100)4 – ((Tв + 273)/100) 4) / (Tп – Tв) (3.4)

8. Определяем полный коэффициент теплоотдачи:

αп = αк + αл (3.5)

9. Определяем часовые тепловые потери трубопроводом:

Q = αп π Dп L (Tп – Tв) / 1000 (3.6)

10. Определяем потери тепла, за расчетный период времени, Гкал/час:

QN = 24 Q N /1000000, (3.7)

где N - количество суток в расчетном периоде времени.

Дальнейшие действия следует выполнять, если есть опасения, что снижение температуры на участке велико и расчет следует выполнять по нелинейной зависимости. Для дальнейшего расчета должен быть известен расход теплоносителя на участке.

11. Определяем модуль показателя экспоненты А L :

А L = αп π Dп L / (106 Gw ) (3.8)

Если полученное значение незначительно отличается от 0, то погрешность расчета теплопотерь составляет примерно половину вычисленного значения. Так, если полученное значение равно 0,05, то можно считать, что теплопотери были определены с точностью порядка 2,5%. Если полученная точность расчета устраивает, то переходим к пункту 13. При необходимости можно откорректировать значение теплопотерь в соответствии с определенной погрешностью:

Q = Q (1 – АL / 2) (3.9)

12. Если значение модуля показателя экспоненты А L больше 0,05, или если требуется более высокая точность расчета, вычисляем снижение температуры теплоносителя на участке за счет теплопотерь по экспоненциальной зависимости:

Tw = ( Tw - T в ) (1 – е--А L )

13. Определяем конечную температуру теплоносителя, чтобы убедиться, что трубопровод не перемерзнет:

Twк = Tw - ∆Tw (3.10)

13. Определяем уточненное значение теплопотерь:

Q = 1000 Gw ∆Tw (3.11)

14. Определяем уточненные потери тепла за расчетный период времени в соответствии с п.10.

4. Пример расчета тепловых потерь трубопровода

Исходные данные:

Требуется определить потери теплоты подающим трубопроводом за февраль при следующих исходных данных:

Dп = 426 мм, L = 750 м, Tw = 78°С, T в = -21 °С, Uв = 6,4 м/с,

Gw = 460 т/час, N = 28 сут., местность пересеченная.

Расчет:

1.Определяем по таблицам приложения А при T в = -21 °С: λв = 1,953

vв = 11,69

2. По таблице 1 определяем для пересеченной местности: βu = 0,707

3. Принимаем по среднему значению: βφ , = 0,821

4. Вычисляем: Re = 1000 · 6,4 · 0,707 · 426 / 11,69 = 164890

5. Вычисляем: αк = 2,16 · 0,821·1625670,6 · 1,953 / 420 = 10,975

6. Принимаем по среднему значению: εп = 0,9

7. Вычисляем:

αл = 4,97·0,9 · (((78+273)/100)4 – ((-21+273)/100)4) / (78+21) = 4,348

8. Вычисляем: αп = 10,975 + 4,348 = 15,323

9. Вычисляем:

Q = 16,08 · 3.14 · 420 · 750 · (78+21) / 1000 = 1522392 ккал/час

11. Вычисляем: А L = 16,08 · 3.14 · 420 · 750 / (106 · 460) = 0,03343

Следовательно, теплопотери были определены с погрешностью около 0,03343 / 2 · 100 = 1,7%. Вычислений по нелинейной зависимости не требуется. Для коррекции значения теплопотерь вычисляем:

Q = 1522392 · (1 - 0,03343 / 2) = 1496945 ккал/час

12. Вычисляем: Tw = 1496945 /(103 · 460) = 3,254 °С

13. Вычисляем: Q N = 24 · 1496945 · 28 / 1000000 = 1005,95 Гкал

При вычислении по экспоненциальной зависимости получили бы следующие результаты:

Tw = (78 + 21) · (1 – ЕХР(0,03343)) = 3,255 °С

Q = 1000 · 460 · 3,255 = 1497300 ккал/час

Q N = 24 · 1497300 · 28 / 1000000 = 1006,2 Гкал

Приложение А

Теплофизические характеристики воздуха

Таблица А1 - Коэффициенты теплопроводности воздуха λв ·102

Tв,°С

Tв < 0

Tв > 0

Таблица А2 - Коэффициенты кинематической вязкости воздуха ·106

Тв,°С

Tв < 0

Tв > 0


Литература

1. Нащокин В. В. Техническая термодинамика и теплопередача. Учебное пособие для неэнергетических специальностей вузов - М.: Высшая школа, 1975 - 496 с. ил.

2. Внутренние санитарно-технические устройства. В 3 ч. Ч. I. Отопление / В. Н.Богословский, Б. А.Крупнов, А. Н.Сканави и др.: Под ред. И. Г.Ста-роверова и Ю. И.Шиллера. - 4-е изд., перераб. и доп. -М.: Стройиздат, 1990 - 344 с.: ил.- (Справочник проектировщика).

3. Нестеренко А. В. Основы термодинамических расчетов вентиляции и кондиционирования воздуха - 3-е изд, перераб. и доп. -М.: Высшая школа, 1971 - 460 с. ил.