Принципиальная схема цтп. Тепловые пункты: устройство, работа, схема, оборудование

Схема работы ИТП построена на простом принципе поступления воды из труб в подогреватели системы снабжения горячей водой, а также отопительной системы. По обратному трубопроводу вода идет для вторичного использования. В систему холодная вода подается через систему насосов, также в системе вода распределяется на два потока. Первый поток уходит из квартиры, второй направлен в циркуляционный контур системы системы снабжения горячей водой для разогрева и последующего распределения горячей воды и отопления.

Схемы ИТП : различия и особенности индивидуальных тепловых пунктов

Индивидуальный тепловой пункт для системы снабжения горячей водой обычно имеет смеху, которая является:

  1. Одноступенчатой,
  2. Параллельной,
  3. Независимой.

В ИТП для системы отопления может быть использована независимая схема , там использован только пластинчатый теплообменник, который может выдержать полную нагрузку. Насос, обычно в этом случае сдвоенный, имеет функцию компенсировать потери давления, а из обратного трубопровода подпитывается система отопления. Этот вид ИТП имеет прибор учета тепловой энергии. Данная схема оснащена двумя пластинчатыми теплообменниками, каждый их которых рассчитан на пятидесятипроцентную нагрузку. Для того чтобы компенсировать потери давления в этой схеме можно использовать несколько насосов. Систему горячего водоснабжения подпитывает система снабжения холодной водой. ИТП для системы отопления и системы горячего водоснабжения собран по независимой схеме. В этой схеме ИТП с теплообменником используется всего один пластинчатый теплообменник . Он рассчитан на все 100% нагрузки. Для того чтобы компенсировать потери давления, используется несколько насосов.

Для системы горячего водоснабжения используется независимая двухступенчатая система, в которой задействованы два теплообменника. Постоянное подпитывание системы отопления осуществляется при помощи обратного трубопровода тепловой семи, также в этой системе задействованы подпиточные насосы. ГВС в этой схеме подпитывается из трубопровода с холодной водой.

Принцип работы ИТП многоквартирного дома

Схема ИТП многоквартирного дома основана на том, что по ней максимально эффективно должно передаваться тепло. Поэтому, по этой схеме оборудование ИТП должно размещаться так, чтобы максимально избежать потерь тепла и при этом эффективно распределить энергию по всем помещениям многоквартирного дома. При этом в каждой квартире температура воды должна быть определенного уровня и вода должна течь с необходимым напором. При регулировании заданной температуры и контроля за давлением, каждая квартира многоквартирного дома получает тепловую энергию в соответствии с распределением ее между потребителями в ИТП при помощи специального оборудования. Благодаря тому, что это оборудование работает автоматически и автоматизировано управляет всеми процессами, возможность аварийных ситуаций при использовании ИТП сведена к минимуму. Отапливаемая площадь жилья многоквартирного дома, а также и конфигурации внутренней теплосети – именно эти факты в первую очередь учитываются при обслуживании ИТП и УУТЭ , а также разработке узлов учета тепловой энергии.

Тепловые пункты: устройство, работа, схема, оборудование

Тепловой пункт представляет собой комплекс технологического оборудования, которое используется в процессе теплоснабжения, вентиляции и горячего водоснабжения потребителей (жилых и производственных зданий, строительных площадок, объектов социального назначения). Главное назначение тепловых пунктов - это распределение тепловой энергии от тепловой сети между конечными потребителями.

Преимущества установки тепловых пунктов в системе теплоснабжения потребителей

Среди преимуществ тепловых пунктов можно назвать следующие:

  • минимизация тепловых потерь
  • сравнительно низкие эксплуатационные затраты, экономичность
  • возможность выбора режима теплоснабжения и теплопотребления в зависимости от времени суток и сезона
  • бесшумная работа, малые габариты (по сравнению с другим оборудованием системы теплообеспечения)
  • автоматизация и диспетчеризация процесса эксплуатации
  • возможность изготовления по индивидуальному заказу

Тепловые пункты могут иметь разные тепловые схемы, типы систем теплопотребления и характеристики используемого оборудования, что зависит от индивидуальных требований Заказчика. Комплектация ТП определяется на основе технических параметров тепловой сети:

  • тепловые нагрузки на сеть
  • температурный режим холодной и горячей воды
  • давление систем тепло- и водоснабжения
  • возможные потери давления
  • климатические условия и т.д.

Виды тепловых пунктов

Вид необходимого теплового пункта зависит от его назначения, количества подводящих теплосистем, количества потребителей, способу размещения и монтажа и выполняемых пунктом функций. В зависимости от вида теплового пункта выбирается его технологическая схема и комплектация.

Тепловые пункты бывают следующих видов:

  • индивидуальные тепловые пункты ИТП
  • центральные тепловые пункты ЦТП
  • блочные тепловые пункты БТП

Открытые и закрытые системы тепловых пунктов. Зависимые и независимые схемы подключения тепловых пунктов

В открытой системе теплоснабжения вода для работы теплового пункта поступает непосредственно из теплосетей. Водозабор может быть полным или частичным. Объем воды, забранный для нужд теплового пункта, восполняется поступлением воды в теплосеть. Следует отметить, что водоподготовка в таких системах осуществляется только на входе в теплосеть. Из-за этого качество воды, поступающей потребителю, оставляет желать лучшего.

Открытые системы, в свою очередь, могут быть зависимыми и независимыми.

В зависимой схеме подключения теплового пункта к тепловой сети теплоноситель из теплосетей попадает непосредственно в систему отопления. Такая система достаточно проста, так как в ней отсутствует необходимость установки дополнительного оборудования. Хотя эта же особенность ведет к существенному недостатку, а, именно, к невозможности регулирования подачи тепла потребителю.

Независимые схемы подключения теплового пункта характеризуются экономической выгодой (до 40%), так как в них между оборудованием конечных потребителей и источником теплоэнергии установлены теплообменники тепловых пунктов, которые регулируют количество подаваемого тепла. Также неоспоримым преимуществом является повышение качества подаваемой воды.

В связи с энергоэффективностью независимых систем многие тепловые компании реконструируют и модернизируют свое оборудование из зависимых систем в независимые.

Закрытая система теплоснабжения является полностью изолированной системой и использует циркулирующую воду в трубопроводе без забора ее из тепловых сетей. Такая система использует воду только в качестве теплоносителя. Утечка теплоносителя возможна, но вода восполняется автоматически при помощи регулятора подпитки.

Количество теплоносителя в закрытой системе остается постоянным, а выработка и распределение тепла потребителю регулируется температурой теплоносителя. Закрытая система характеризуется высоким качеством водоподготовки и высокой энергоэффективностью.

Способы обеспечения потребителей тепловой энергией

По способу обеспечения потребителей тепловой энергией различают одноступенчатые и многоступенчатые тепловые пункты.

Одноступенчатая система характеризуются непосредственным присоединение потребителей к тепловым сетям. Место присоединение называется абонентским вводом. Для каждого объекта теплопотребления должен быть предусмотрен свое технологическое оборудование (подогреватели, элеваторы, насосы, арматура, оборудование КИПиА и др.).

Недостатком одноступенчатой системы подключения является ограничение предела допустимого максимального давления в теплосетях из-за опасности высокого давления для радиаторов отопления. В связи с этим такие системы, в основном, используют для небольшого количества потребителей и для тепловых сетей небольшой длины.

Многоступенчатые системы подключения характеризуются наличием тепловых пунктов между источником тепла и потребителем.

Индивидуальные тепловые пункты

Индивидуальные тепловые пункты обслуживают одного мелкого потребителя (дом, небольшое строение или здание), который уже подключен к системе центрального теплоснабжения. Задача такого ИТП - обеспечение потребителя горячей водой и отоплением (до 40 кВт). Существуют крупные индивидуальные пункты, мощность которых может достигать 2 МВт. Традиционно ИТП размещают в подвале или техническом помещении здания, реже их располагают в отдельно стоящих помещениях. К ИТП подключают только теплоноситель и осуществляют подвод водопроводной воды.

ИТП состоят из двух контуров: первый контур - это контур отопления для поддержания заданной температуры в отапливаемом помещении при помощи датчика температуры; второй контур - это контур горячего водоснабжения.

Центральные тепловые пункты

Центральные тепловые пункты ЦТП применяют для теплообеспечения группы зданий и сооружений. ЦТП выполняют функцию обеспечения потребителей ГВС, ХВС и теплом. Степень автоматизации и диспетчеризации центральных тепловых пунктов (только контроль за параметрами или контроль/управление параметрами ЦТП) определяется Заказчиком и технологическими нуждами. ЦТП могут иметь как зависимую, так и независимую схему подключения к тепловой сети. При зависимой схеме подключения теплоноситель в самом тепловой пункте разделяется на систему отопления и систему горячего водоснабжения. В независимой схеме подключения теплоноситель нагревается во втором контуре теплового пункта поступающей водой из тепловой сети.

Они поставляются на монтажную площадку в полной заводской готовности. На месте последующей эксплуатации осуществляется только подключение к теплосетям и настройка оборудования.

Оборудование центрального теплового пункта (ЦТП) включает в себя следующие элементы:

  • подогреватели (теплообменники) - секционные, многоходовые, блочного типа, пластинчатые - в зависимости от проекта, для горячего водоснабжения, поддерживающие нужную температуру и напор воды у водоразборных точек
  • циркуляционные хозяйственные, противопожарные, отопительные и резервные насосы
  • смесительные устройства
  • тепловые и водомерные узлы
  • контрольно-измерительные приборы КИП и автоматики
  • запорно-регулирующая арматура
  • расширительный мембранный бак

Блочные тепловые пункты (модульные тепловые пункты)

Блочный (модульный) тепловой пункт БТП имеет блочное исполнение. БТП может состоять из более, чем одного блока (модуля), смонтированных, зачастую, на одной объединенной раме. Каждый модуль является независимым и законченным пунктом. При этом регулирование работой общее. Блоснче тепловые пункты могут иметь как локальную систему управления и регулирования, так и дистанционное управление и диспетчеризацию.

В состав блочного теплового пункта могут входить как индивидуальные тепловые пункты, так и центральные тепловые пункты.

Основные системы теплоснабжения потребителей в составе теплового пункта

  • система горячего водоснабжения (открытая или закрытая схема подключения)
  • система отопления (зависимая или независимая схема подключения)
  • система вентиляции

Типовые схемы подключения систем в тепловых пунктах

Типовая схема подключения системы ГВС


Типовая схема подключения системы отопления


Типовая схема подключения системы ГВС и отопления


Типовая схема подключения системы ГВС, отопления и вентиляции


В состав теплового пункта также входит система холодного водоснабжения, но она не является потребителем тепловой энергии.

Принцип работы тепловых пунктов

Тепловая энергия поступает на тепловые пункты от теплогенерирующих предприятий посредством тепловых сетей - первичных магистрельных теплосетей. Вторичные, или разводящие, теплосети соединяют ТП уже с конечным потребителем.

Магистральные теплосети обычно имеют большую протяженность, соединяя источник тепла и непосредственно тепловой пункт, и диаметр (до 1400 мм). Зачастую магистральные тепловые сети могут объединять несколько теплогенерирующих предприятий, что увеличивает надежность обеспечения потребителей энергией.

Перед поступление в магистральные сети вода проходит водоподготовку, которая приводит химические показатели воды (жесткость, рН, содержание кислорода, железа) в соответствии с нормативными требованиями. Это необходимо для того, чтобы снижать уровень коррозионного влияния воды на внутреннюю поверхность труб.

Разводящие трубопроводы имеют сравнительно малую протяженность (до 500 м), соединяя тепловой пункт и уже конечного потребителя.

Теплоноситель (холодная вода) поступает по подающему трубопроводу в тепловой пункт, где проходит через насосы системы холодного водоснабжения. Далее он (теплоноситель) использует первичные подогреватели ГВС и подается в циркуляционный контур системы горячего водоснабжения, откуда поступает уже к конечному потребителю и обратно в ТП, постоянно циркулируя. Для поддержания необходимой температуры теплоносителя, он постоянно подогревается в подогревателе второй ступени ГВС.

Система отопления - это такой же замкнутый контур, как и система ГВС. В случае возникновения утечек теплоносителя, его объем восполняется из системы подпитки теплового пункта.

Затем теплоноситель поступает в обратный трубопровод и поступает опять на теплогенерирующее предприятие по магистральным трубопроводам.

Типовая комплектация тепловых пунктов

Для обеспечения надежной эксплуатации тепловых пунктов они поставляются со следующим минимальным технологическим оборудованием:

Следует отметить, что комплектация теплового пункта технологическим оборудованием во многом зависит от схемы подключения системы горячего водоснабжения и схемы подключения системы отопления.

Так, например, в закрытых системах устанавливаются теплообменники, насосы и оборудование водоподготовки для дальнейшего распределения теплоносителя между системой ГВС и системой отопления. А в открытых системах устанавливаются смесительные насосы (для смешения горячей и холодной воды в нужной пропорции) и регуляторы температуры.

Наши специалисты оказывают весь комплекс услуг, начиная с проектирования, производства, поставки, и заканчивая монтажом и пуско-наладкой тепловых пунктов различной комплектации.

Правильность функционирования обору­дования теплового пункта определяет эконо­мичность использования и подаваемой потре­бителю теплоты, и самого теплоносителя. Тепловой пункт является юридической грани­цей, что предполагает необходимость его оборудования набором контрольно-измерительных приборов, позволяющих определить взаимную ответственность сторон. Схемы и оборудование тепловых пунктов необходимо определять в соответствии не только с тех­ническими характеристиками местных систем теплопотребления, но и обязательно с харак­теристиками внешней тепловой сети, режимом работы ее и теплоисточника.

В разделе 2 рассмотрены схемы присоеди­нения всех трех основных видов местных систем. Рассматривались они раздельно, т. е. считалось, что они присоединены как бы к общему коллектору, давление теплоносите­ля в котором постоянно и не зависит от расхода. Суммарный расход теплоносителя в коллекторе в этом случае равен сумме расходов в ветвях.

Однако тепловые пункты присоединяют­ся не к коллектору теплоисточника, а к тепловой сети, и в этом случае изменение расхода теплоносителя в одной из систем неизбежно отразится на расходе теплоноси­теля в другой.

Рис.4.35. Графики расхода теплоносителя:

а - при подключении потребителей непосредст­венно к коллектору теплоисточника; б - при под­ключении потребителей к тепловой сети

На рис. 4.35 графически показано изме­нение расходов теплоносителя в обоих слу­чаях: на схеме рис. 4.35, а системы отопле­ния и горячего водоснабжения присоеди­нены к коллекторам теплоисточника раздель­но, на схеме рис. 4.35,б те же системы (и с тем же расчетным расходом тепло­носителя) присоединены к наружной тепловой сети, имеющей значительные потери давления. Если в первом случае суммарный расход теплоносителя растет синхронно с расходом на горячее водоснабжение (режимы I , II, III ), то во втором, хотя и имеет место рост расхода теплоносителя, одновременно авто­матически снижается расход на отопление, в результате чего суммарный расход тепло­носителя (в данном примере) составляет при применении схемы рис. 4.35,б 80% расхода при применении схемы рис. 4.35,а. Степень сокращения расхода воды определяет соотно­шение располагаемых напоров: чем больше соотношение, тем больше снижение суммар­ного расхода.

Магистральные тепловые сети рассчиты­ваются на среднесуточную тепловую нагруз­ку, что существенно снижает их диаметры, а следовательно, затраты средств и металла. При применении в сетях повышенных гра­фиков температур воды возможно и дальней­шее снижение расчетного расхода воды в теп­ловой сети и расчет ее диаметров только на нагрузку отопления и приточной венти­ляции.

Максимум горячего водоснабжения мо­жет быть покрыт с помощью аккумулято­ров горячей воды либо путем использо­вания аккумулирующей способности отапливаемых зданий. Поскольку применение акку­муляторов неизбежно вызывает дополнитель­ные капитальные и эксплуатационные затра­ты, то их применение пока ограничено. Тем не менее в ряде случаев применение крупных аккумуляторов в сетях и при групповых тепловых пунктах (ГТП) может быть эффективно.

При использовании аккумулирующей способности отапливаемых зданий имеют место колебания температуры воздуха в по­мещениях (квартирах). Необходимо, чтобы эти колебания не превышали допустимого предела, в качестве которого можно, напри­мер, принять +0,5°С. Температурный режим помещений определяется рядом факторов и поэтому трудно поддается расчету. Наиболее надежным в данном случае является метод эксперимента. В условиях средней полосы РФ длительная эксплуатация показывает возможность применения этого способа по­крытия максимума для подавляющего боль­шинства эксплуатируемых жилых зданий.

Фактическое использование аккумули­рующей способности отапливаемых (в основ­ном жилых) зданий началось с появления в тепловых сетях первых подогревателей горячего водоснабжения. Так, регулировка теплового пункта при параллельной схеме включения подогревателей горячего водо­снабжения (рис. 4.36) производилась таким образом, что в часы максимума водоразбора некоторая часть сетевой воды недодавалась в систему отопления. По этому же принципу работают тепловые пункты при открытом водоразборе. Как при открытой, так и закрытой системе теплоснабжения наиболь­шее снижение расхода в отопительной системе имеет место при температуре сете­вой воды 70 °С (60 °С) и наименьшее (нуле­вое) - при 150°С.

Рис. 4.36. Схема теплового пункта жилого дома с параллельным включением подогре­вателя горячего водоснабжения:

1 - подогреватель горячего водоснабжения; 2 - эле­ватор; 3 4 - цир­куляционный насос; 5 - регулятор температуры от датчика наружной температуры воздуха

Возможность организованного и заранее рассчитанного использования аккумулирую­щей способности жилых зданий реализо­вана в схеме теплового пункта с так называемым предвключенным подогревате­лем горячего водоснабжения (рис. 4.37).

Рис. 4.37. Схема теплового пункта жилого дома с предвключенным подогревателем го­рячего водоснабжения:

1 - подогреватель; 2 - элеватор; 3 - регулятор температуры воды; 4 - регулятор расхода; 5 - циркуляционный насос

Преимуществом предвключенной схемы является возможность работы теплового пункта жилого дома (при отопительном графике в тепловой сети) на постоянном расходе теплоносителя в течение всего отопи­тельного сезона, что делает гидравлический режим тепловой сети стабильным.

При отсутствии автоматического регули­рования в тепловых пунктах стабильность гидравлического режима явилась убедитель­ным аргументом в пользу применения двухступенчатой последовательной схемы включения подогревателей горячего водо­снабжения. Возможности применения этой схемы (рис. 4.38) по сравнению с предвклю­ченной возрастают из-за покрытия определен­ной доли нагрузки горячего водоснабжения за счет использования теплоты обратной воды. Однако применение данной схемы в основном связано с внедрением в тепловых сетях так называемого повышенного графика температур, с помощью которого и может достигаться примерное постоянство расходов теплоносителя на тепловом (например, для жилого дома) пункте.

Рис. 4.38. Схема теплового пункта жилого дома с двухступенчатым последовательным включением подогревателей горячего водо­снабжения:

1,2 - 3 - элеватор; 4 - регулятор температуры воды; 5 - регулятор расхода; 6 - перемычка для переклю­чения на смешанную схему; 7 - циркуляционный насос; 8 - смесительный насос

Как в схеме с предвключенным подогре­вателем, так и в двухступенчатой схеме с последовательным включением подогрева­телей имеет место тесная связь между отпуском теплоты на отопление и горячее водоснабжение, причем приоритет обычно отдается второму.

Более универсальной в этом отношении является двухступенчатая смешанная схема (рис. 4.39), которая может применяться как при нормальном, так и при повышенном отопительном графике и для всех потреби­телей независимо от соотношения нагрузок горячего водоснабжения и отопления. Обяза­тельным элементом обеих схем являются смесительные насосы.

Рис. 4.39. Схема теплового пункта жилого дома с двухступенчатым смешанным вклю­чением подогревателей горячего водоснабже­ния:

1,2 - подогреватели первой и второй ступеней; 3 - элеватор; 4 - регулятор температуры воды; 5 - циркуляционный насос; 6 - смесительный на­сос; 7 - регулятор температуры

Минимальная температура подаваемой воды в тепловой сети со смешанной тепло­вой нагрузкой составляет около 70 °С, что требует ограничения подачи теплоносителя на отопление в периоды высоких темпе­ратур наружного воздуха. В условиях средней полосы РФ эти периоды достаточно продолжительны (до 1000 ч и более) и пере­расход теплоты на отопление (по отноше­нию к годовому) из-за этого может достигать до 3 % и более. Так как современные системы отопления достаточно чувствитель­ны к изменению температурно-гидравлического режима, то для исключения пере­расхода теплоты и соблюдения нормальных санитарных условий в отапливаемых поме­щениях необходимо дополнение всех упомя­нутых схем тепловых пунктов устройствами для регулирования температуры воды, посту­пающей в системы отопления, путем установки смесительного насоса, что обычно и при­меняется в групповых тепловых пунктах. В местных тепловых пунктах при отсутст­вии бесшумных насосов как промежуточное решение может применяться также элеватор с регулируемым соплом. При этом надо учитывать, что такое решение неприемлемо при двухступенчатой последовательной схеме. Необходимость в установке смесительных насосов отпадает при присоединении систем отопления через подогреватели, так как их роль в этом случае выполняют циркуля­ционные насосы, обеспечивающие постоянст­во расхода воды в отопительной сети.

При проектировании схем тепловых пунк­тов в жилых микрорайонах при закрытой системе теплоснабжения основным вопросом является выбор схемы присоединения по­догревателей горячего водоснабжения. Вы­бранная схема определяет расчетные расходы теплоносителя, режим регулирования и пр.

Выбор схемы присоединения прежде всего определяется принятым температурным режи­мом тепловой сети. При работе тепловой сети по отопительному графику выбор схемы присоединения следует производить на основе технико-экономического расчета - путем сравнения параллельной и смешан­ной схем.

Смешанная схема может обеспечить более низкую температуру обратной воды в целом от теплового пункта по сравне­нию с параллельной, что помимо снижения расчетного расхода воды для тепловой сети обеспечивает более экономичную выработку электроэнергии на ТЭЦ. Исходя из этого в практике проектирования при теплоснаб­жении от ТЭЦ (а также при совместной работе котельных с ТЭЦ), предпочтение при отопительном графике температур от­дается смешанной схеме. При коротких тепло­вых сетях от котельных (и поэтому отно­сительно дешевых) результаты технико-экономического сравнения могут быть и дру­гими, т. е. в пользу применения более простой схемы.

При повышенном графике температур в закрытых системах теплоснабжения схема присоединения может быть смешанной или последовательной двухступенчатой.

Сравнение, выполненное различными ор­ганизациями на примерах автоматизации центральных тепловых пунктов, показывает, что обе схемы в условиях нормальной работы источника теплоснабжения примерно равноэкономичны.

Небольшим преимуществом последова­тельной схемы является возможность работы без смесительного насоса в течение 75 % продолжительности отопительного сезона, что давало прежде некоторые обоснования отказаться от насосов; при смешанной схеме насос должен работать весь сезон.

Преимуществом смешанной схемы яв­ляется возможность полного автоматического выключения систем отопления, что невоз­можно получить в последовательной схеме, так как вода из подогревателя второй сту­пени попадает в систему отопления. Оба указанных обстоятельства не являются ре­шающими. Важным показателем схем являет­ся их работа в критических ситуациях.

Такими ситуациями могут быть снижение температуры воды в ТЭЦ против графика (например, из-за временного недостатка топ­лива) либо повреждение одного из участ­ков магистральной тепловой сети при нали­чии резервирующих перемычек.

В первом случае схемы могут реагиро­вать примерно одинаково, во втором - по-разному. Имеется возможность 100%-го резервирования потребителей до t н = –15 °С без увеличения диаметров тепловых магистралей и перемы­чек между ними. Для этого при сокра­щении подачи теплоносителя на ТЭЦ одно­временно соответственно повышается темпе­ратура подаваемой воды. Автоматизирован­ные смешанные схемы (при обязательном наличии смесительных насосов) на это прореагируют сокращением расхода сетевой воды, что и обеспечит восстановление нор­мального гидравлического режима во всей сети. Такая компенсация одного параметра другим полезна и в других случаях, так как позволяет в определенных пределах проводить, например, ремонтные работы на тепловых магистралях в отопительный сезон, а также локализовать известные несоот­ветствия температуры подаваемой воды по­требителям, расположенным в разном удале­нии от ТЭЦ.

Если автоматизация регулирования схем с последовательным включением подогре­вателей горячего водоснабжения предусмат­ривает постоянство расхода теплоносителя из тепловой сети, возможность компен­сации расхода теплоносителя его темпера­турой в этом случае исключается. Не приходится доказывать всю целесообразность (в проектировании, монтаже и особенно в эксплуатации) применения единообразной схе­мы присоединения. С этой точки зрения несомненное преимущество имеет двухступен­чатая смешанная схема, которая может применяться независимо от графика температур в тепловой сети и соотношения нагрузок горячего водоснабжения и отопления.

Рис. 4.40. Схема теплового пункта жилого дома при открытой системе теплоснабжения:

1 - регулятор (смеситель) температуры воды; 2 - элеватор; 3 - обратный клапан; 4 - дроссельная шайба

Схемы присоединения жилых зданий при открытой системе теплоснабжения значи­тельно проще описанных (рис. 4.40). Эконо­мичная и надежная работа таких пунктов может быть обеспечена лишь при наличии и надежной работе авторегулятора темпера­туры воды, ручное переключение потреби­телей к подающей или обратной линии не обеспечивает необходимой температуры воды. К тому же система горячего водо­снабжения, подключенная к подающей линии и отключенная от обратной, работает под давлением подающего теплопровода. При­веденные соображения о выборе схем тепло­вых пунктов в одинаковой степени относятся как к местным тепловым пунктам (МТП) в зда­ниях, так и к групповым, которые могут обеспечивать теплоснабжение целых микро­районов.

Чем больше мощность теплоисточника и радиус действия тепловых сетей, тем прин­ципиально более сложными должны стано­виться схемы МТП, поскольку вырастают абсолютные давления, усложняется гидравли­ческий режим, начинает сказываться тран­спортное запаздывание. Так, в схемах МТП появляется необходимость применения на­сосов, средств защиты и сложной аппара­туры авторегулирования. Все это не только удорожает сооружение МТП, но и услож­няет их обслуживание. Наиболее рациональ­ным способом упрощения схем МТП является сооружение групповых тепловых пунктов (в виде ГТП), в которых и должно разме­щаться дополнительное сложное оборудова­ние и приборы. Этот способ наиболее применим в жилых микрорайонах, в которых характеристики систем отопления и горячего водоснабжения и, следовательно, схемы МТП однотипны.

Прежде чем описывать устройство и функции ЦТП (центральный тепловой пункт) приведем общее определение тепловых пунктов. Тепловой пункт или сокращенно ТП это комплекс оборудования расположенный в отдельном помещении обеспечивающий отопление и горячее водоснабжение здания или группы зданий. Основное отличие ТП от котельной заключается в том, что в котельной происходит нагрев теплоносителя за счет сгорания топлива, а тепловой пункт работает с нагретым теплоносителем, поступающим из централизованной системы. Нагрев теплоносителя для ТП производят теплогенерирующие предприятия - промышленные котельные и ТЭЦ. ЦТП это тепловой пункт обслуживающий группу зданий , например, микрорайон, поселок городского типа, промышленное предприятие и т.д. Необходимость в ЦТП определяется индивидуально для каждого района на основании технических и экономических расчетов, как правило, возводят один центральный тепловой пункт для группы объектов с расходом теплоты 12-35 МВт.

Для лучшего понимания функций и принципов работы ЦТП дадим краткую характеристику тепловым сетям. Тепловые сети состоят из трубопроводов и обеспечивают транспортировку теплоносителя. Они бывают первичные, соединяющие теплогенерирующие предприятия с тепловыми пунктами и вторичные, соединяющие ЦТП с конечными потребителями. Из этого определения можно сделать вывод, что ЦТП являются посредником между первичными и вторичными тепловыми сетями или теплогенерирующими предприятиями и конечными потребителями. Далее подробно опишем основные функции ЦТП.

Функции центрального теплового пункта (ЦТП)

Как мы уже писали основная функция ЦТП служить посредником между централизованными теплосетями и потребителями, то есть распределение теплоносителя по системам отопления и горячего водоснабжения (ГВС) обслуживаемых зданий, а так же функции обеспечения безопасности, управления и учета.

Подробнее распишем задачи, решаемые центральными тепловыми пунктами:

  • преобразование теплоносителя, например, превращение пара в перегретую воду
  • изменение различных параметров теплоносителя, таких как давление, температура и т. д.
  • управление расходом теплоносителя
  • распределение теплоносителя по системам отопления и горячего водоснабжения
  • водоподготовка для ГВС
  • защита вторичных тепловых сетей от повышения параметров теплоносителя
  • обеспечение отключения отопления или горячего водоснабжения в случае необходимости
  • контроль расхода теплоносителя и других параметров системы, автоматизация и управление

Итак, мы перечислили основные функции ЦТП. Далее постараемся описать устройство тепловых пунктов и установленное в них оборудование.

Устройство ЦТП

Как правило, центральный тепловой пункт - это отдельно стоящее одноэтажное здание с расположенным в нем оборудованием и коммуникациями.

Перечислим основные узлы ЦТП:

  • теплообменник, в ЦТП является аналогом отопительного котла в котельной, т.е. работает в качестве теплогенератора. В теплообменнике происходит нагрев теплоносителя для отопления и ГВС, но не посредством сжигания топлива, а за счёт передачи тепла от теплоносителя в первичной тепловой сети.
  • насосное оборудование, выполняющее различные функции представлено циркуляционными, повысительными, подпиточными и смесительными насосами.
  • клапаны регуляторы давления и температуры
  • грязевые фильтры на вводе и выходе трубопровода из ЦТП
  • запорная арматура (краны для перекрытия различных трубопроводов в случае необходимости)
  • системы контроля и учета расхода теплоты
  • системы электроснабжения
  • системы автоматизации и диспетчеризации

Подводя итог, скажем, что основная причина, по которой возникает необходимость в строительстве ЦТП, является несоответствие параметров теплоносителя поступающего от теплогенерирующих предприятий параметрам теплоносителя в системах потребителей тепла. Температура и давление теплоносителя в магистральном трубопроводе значительно выше, чем должна быть в системах отопления и горячего водоснабжения зданий. Можно сказать, теплоноситель с заданными параметрами является основным продуктом работы ЦТП.

Индивидуальный тепловой пункт (ИТП) предназначен для распределения тепла с целью обеспечения отоплением и горячей водой жилого, коммерческого или производственного здания.

Основными узлами теплового пункта, подлежащими комплексной автоматизации, являются:

  • узел холодного водоснабжения (ХВС);
  • узел горячего водоснабжения (ГВС);
  • узел отопления;
  • узел подпитки контура отопления.

Узел холодного водоснабжения предназначен для обеспечения потребителей холодной водой с заданным давлением. Для точного поддержания давления обычно используется частотный преобразователь и датчик давления . Конфигурация узла ХВС может быть различной:

  • (автоматический ввод резерва).

Узел ГВС обеспечивает потребителей горячей водой. Основной задачей является поддержание заданной температуры при изменяющемся расходе. Температура не должна быть слишком горячей или холодной. Обычно в контуре ГВС поддерживается температура 55 °С.

Теплоноситель, поступающий из теплосети, проходит через теплообменник и нагревает воду во внутреннем контуре, поступающую к потребителям. Регулирование температуры ГВС производится при помощи клапана с электроприводом. Клапан устанавливается на линии подачи теплоносителя и регулирует его расход с целью поддержания заданной температуры на выходе теплообменника.

Циркуляция во внутреннем контуре (после теплообменника) обеспечивается при помощи насосной группы. Чаще всего используются два насоса, которые работают поочередно для равномерного износа. При выходе из строя одного из насосов происходит переключение на резервный (автоматический ввод резерва - АВР).

Узел отопления предназначен для поддержания температуры в отопительной системе здания. Уставка температуры в контуре формируется в зависимости от температуры воздуха на улице (наружного воздуха). Чем холоднее на улице тем горячее должны быть батареи. Зависимость между температурой в контуре отопления и температурой наружного воздуха определяется отопительным графиком, который должен настраиваться в системе автоматики.

Кроме регулирования температуры, в контуре отопления должна быть реализована защита от превышения температуры воды, возвращаемой в теплосеть. Для этого используется график обратной воды.

Согласно требованиям тепловых сетей, температура обратной воды не должна превышать значений, заданных в графике обратной воды.

Температура обратной воды является показателем эффективности использования теплоносителя.

Кроме описанных выше параметров, существуют дополнительные методы повышения эффективности и экономичности теплового пункта. Ими являются:

  • сдвиг графика отопления в ночное время;
  • сдвиг графика в выходные дни.

Данные параметры позволяют оптимизировать процесс потребления тепловой энергии. Примером может служить коммерческое здание, работающее в будние дни с 8:00 до 20:00. Снизив температуру отопления ночью и выходные дни (когда организация не работает), можно добиться экономии на отоплении.

Контур отопления в ИТП может быть подключен к теплосети по зависимой схеме или независимой. При зависимой схеме вода из теплосети подается в батареи без использования теплообменника. При независимой схеме теплоноситель через теплообменник подогревает воду во внутреннем контуре отопления.

Регулирование температуры отопления производится при помощи клапана с электроприводом. Клапан устанавливается на линии подачи теплоносителя. При зависимой схеме клапан непосредственно регулирует количество подаваемого теплоносителя в батареи отопления. При независимой схеме клапан регулирует расход теплоносителя с целью поддержания заданной температуры на выходе теплообменника.

Циркуляция во внутреннем контуре обеспечивается при помощи насосной группы. Чаще всего используются два насоса, которые работают поочередно для равномерного износа. При выходе из строя одного из насосов происходит переключение на резервный (автоматический ввод резерва - АВР).

Узел подпитки контура отопления предназначен для поддержания требуемого давления в контуре отопления. Подпитка включается в случае падения давления в контуре отопления. Подпитка осуществляется при помощи клапана, либо насосов (одного или двух). Если используются два насоса, то для равномерного износа они чередуются по времени. При выходе из строя одного из насосов происходит переключение на резервный (автоматический ввод резерва - АВР).

Типовые примеры и описание

Управление тремя насосными группами: отопления, ГВС и подпитки:

  • включение насосов подпитки производится при срабатывании датчика, установленного на обратном трубопроводе контура отопления. В качестве датчика может выступать датчик-реле давления или электроконтактный манометр.

Управление четырьмя насосными группами: отопления, ГВС1, ГВС2 и подпитки:

Управление пятью насосными группами: отопления 1, отопления 2, ГВС, подпитки 1 и подпитки 2:

  • каждая насосная группа может состоять из одного или двух насосов;
  • временные интервалы работы для каждой насосной группы настраиваются независимо.

Управление шестью насосными группами: отопления 1, отопления 2, ГВС 1, ГВС 2, подпитки 1 и подпитки 2:

  • при использовании двух насосов производится их автоматическое чередование через заданные промежутки времени для равномерного износа, а также аварийное включение резерва (АВР) при выходе насоса из строя;
  • для контроля исправности насосов используется контактный датчик («сухой контакт»). В качестве датчика может выступать датчик-реле давления, реле перепада давления, электроконтактный манометр или реле протока;
  • включение насосов подпитки производится при срабатывании датчика, установленного на обратном трубопроводе контуров отопления. В качестве датчика может выступать датчик-реле давления или электроконтактный манометр.