Как расшифровывается итп. Центральный тепловой пункт (ЦТП)

Индивидуальный тепловой пункт предназначен для экономии тепла, регулирования параметров снабжения. Это комплекс, располагающийся в отдельном помещении. Может эксплуатироваться в частном или многоквартирном доме. ИТП (индивидуальный тепловой пункт), что это такое, как устроен и функционирует, рассмотрим подробнее.

ИТП: задачи, функции, назначение

По определению ИТП — тепловой пункт, обогревающий здания полностью или отчасти. Комплекс получает энергию из сети (ЦТП, центрального теплового пункта или котельной) и распределяет ее до потребителей:

  • ГВС (горячего водоснабжения);
  • отопления;
  • вентиляции.

При этом имеется возможность регуляции, так как режим обогрева в жилой комнате, подвале, на складе, отличается. На ИТП возлагаются следующие основные задачи.

  • Учет расхода тепла.
  • Защита от аварий, контроль за параметрами для безопасности.
  • Отключение системы потребления.
  • Равномерное распределение тепла.
  • Регулировка характеристик, управление температурными и другими параметрами.
  • Преобразование теплоносителя.

Для установки ИТП здания модернизируются, что обходится недешево, но несет в себе выгоды. Пункт располагают в отдельном техническом или подвальном помещении, пристройке к дому или отдельно расположенном рядом сооружении.

Преимущества наличия ИТП

Значительные расходы на создание ИТП допускаются в связи с преимуществами, которые следуют из наличия пункта в здании.

  • Экономичность (по потреблению — на 30%).
  • Снижение затрат на эксплуатацию до 60%.
  • Расход тепла контролируется и учитывается.
  • Оптимизация режимов снижает потери до 15%. Учитывается время суток, выходные дни, погода.
  • Тепло распределяется соответственно условиям потребления.
  • Расход можно регулировать.
  • Вид теплоносителя подлежит изменению в случае необходимости.
  • Низкая аварийность, высокая безопасность эксплуатации.
  • Полная автоматизация процесса.
  • Бесшумность.
  • Компактность, зависимость габаритов от нагрузки. Пункт можно разместить в подвале.
  • Обслуживание тепловых пунктов не требует многочисленного персонала.
  • Обеспечивает комфорт.
  • Оборудование комплектуется под заказ.

Управляемый расход тепла, возможность влияния на показатели привлекает в плане экономии, рационального расхода ресурса. Поэтому считается, что затраты окупаются в приемлемый период.

Виды ТП

Различие ТП — в количестве и видах систем потребления. Особенности типа потребителя предопределяют схему и характеристики требуемого оборудования. Отличается способ монтажа и расстановки комплекса в помещении. Выделяют следующие виды.

  • ИТП для единственного здания или его части, расположенный в подвале, техническом помещении или рядом стоящем сооружении.
  • ЦТП — центральный ТП обслуживает группу зданий или объектов. Располагается в одном из подвалов или отдельном сооружении.
  • БТП — блочный тепловой пункт. Включает один или несколько блоков, изготовленных и поставленных на производстве. Отличается компактным монтажом, применяется для экономии места. Может выполнять функцию ИТП или ЦТП.

Принцип работы

Схема конструкции зависит от источника энергии и специфики потребления. Наиболее популярная — независимая, для закрытой системы ГВС. Принцип работы ИТП следующий.

  1. Носитель тепла приходит в пункт по трубопроводу, отдавая температуру подогревателям отопления, ГВС и вентиляции.
  2. Теплоноситель идет в обратный трубопровод на теплогенерирующее предприятие. Используется повторно, но часть может быть израсходована потребителем.
  3. Потери тепла восполняются подпитками, имеющимися в ТЭЦ и котельных (подготовка воды).
  4. В тепловую установку поступает водопроводная вода, проходя через насос для холодного водоснабжения. Часть ее идет потребителю, остальное нагревается подогревателем 1 ступени, направляясь в контур ГВС.
  5. Насос ГВС перемещает воду по кругу, проходя через ТП, потребителя, возвращается с частичным расходом.
  6. Подогреватель 2 ступени действует регулярно при потере жидкостью тепла.

Теплоноситель (в данном случае — вода) движется по контуру, чему способствуют 2 циркуляционных насоса. Возможны его утечки, которые восполняет подпитка из первичной тепловой сети.

Принципиальная схема

Та или иная схема ИТП имеет особенности, зависящие от потребителя. Важен центральный поставщик тепла. Самый распространенный вариант — закрытая система ГВС с независимым присоединением отопления. В ТП по трубопроводу поступает носитель тепла, реализуется при подогреве воды для систем и возвращается. Для возврата имеется обратный трубопровод, идущий к магистрали на центральный пункт — предприятие по генерации тепла.

Отопление и ГВС устроено в виде контуров, по которым с помощью насосов перемещается носитель тепла. Первый принято проектировать, как замкнутый цикл с возможными утечками, восполняемыми из первичной сети. А второй контур — циркулярный, снабженный насосами для ГВС, подающий воду к потребителю для расходования. При потере тепла нагрев осуществляется второй нагревательной ступенью.

ИТП для разных целей потребления

Будучи оборудованным для отопления, ИТП имеет независимую схему, в которой установлен пластинчатый теплообменник со 100% нагрузкой. Потери давления предотвращается установкой сдвоенного насоса. Подпитка осуществляется от обратного трубопровода в тепловых сетях. Дополнительно ТП комплектуется приборами учета, блоком ГВС при наличии других необходимых узлов.


ИТП, предназначенный для ГВС — это независимая схема. Кроме того, она параллельная и одноступенчатая, укомплектованная двумя пластинчатыми теплообменниками, нагруженными по 50%. Есть насосы, компенсирующие снижение давления, приборы учета. Предполагается наличие других узлов. Подобные теплопункты функционируют по независимой схеме.

Это интересно! Принцип осуществления теплофикации для отопительной системы может быть основан на пластинчатом теплообменнике со 100% нагрузкой. А ГВС имеет двухступенчатую схему с двумя аналогичными устройствами, нагруженными на 1/2 каждый. Насосы различного назначения компенсируют снижающееся давление и подпитывают систему из трубопровода.

Для вентиляции применяют пластинчатый теплообменник со 100% нагрузкой. ГВС обеспечивается двумя такими устройствам, нагруженными на 50%. Посредством работы нескольких насосов компенсируется уровень давления и делается подпитка. Дополнение — устройство учета.

Этапы установки

ТП здания или объекта при установке проходит поэтапную процедуру. Одного лишь желания жильцов в многоквартирном здании недостаточно.

  • Получение согласия собственников помещений жилого здания.
  • Заявка теплоснабжающим компаниям на проектирование в конкретном доме, разработка техзадания.
  • Выдача технических условий.
  • Обследование жилого либо иного объекта под проект, определение наличия и состояния оборудования.
  • Автоматический ТП будут проектировать, разрабатывать и утверждать.
  • Заключается договор.
  • Проект ИТП жилого дома либо иного объекта реализуется, проводятся испытания.

Внимание! Все этапы можно реализовать за пару месяцев. Забота возлагается на ответственную специализированную организацию. Для успеха компания должна быть хорошо зарекомендована.

Безопасность эксплуатации

Автоматический теплопункт имеет обслуживание с работниками должной квалификации. Персонал знакомят с правилами. Есть и запреты: автоматика не запускается при отсутствии воды в системе, насосы не включают, если на вводе перекрыта запорная арматура.
Требуется контролировать:

  • параметры давления;
  • шумы;
  • уровень вибрации;
  • нагрев двигателя.

Регулирующий клапан нельзя подвергать чрезмерному усилию. Если система под давлением, регуляторы не разбирают. Перед пуском промывают трубопроводы.

Допуск к эксплуатации

Эксплуатация комплексов АИТП (автоматизированных ИТП) требует оформления допуска, для чего в Энергонадзор предоставляется документация. Это техусловия подключения и справка об их исполнении. Нужны:

  • согласованная проектная документация;
  • акт ответственности по эксплуатированию, балансу принадлежности от сторон;
  • акт готовности;
  • теплопункты должны иметь паспорт с параметрами теплоснабжения;
  • готовность устройства учета тепловой энергии — документ;
  • справка о наличии договора с энергокомпанией по обеспечению теплоснабжения;
  • акт приемки работ от компании, производящей монтаж;
  • Приказ, назначающий ответственного за техобслуживание, исправность, ремонт и безопасность АТП (автоматизированного теплового пункта);
  • список лиц, отвечающих за обслуживание установок АИТП и их ремонт;
  • копия документа о квалификации сварщика, сертификаты на электроды и трубы;
  • акты по иным действиям, исполнительная схема объекта автоматизированный теплопункт, включающая трубопроводы, арматуру;
  • акт по опрессовке, промывке отопления, ГВС, которые включает автоматизированный пункт;
  • инструктаж.


Составляется акт допуска, заводятся журналы: оперативный, по инструктажу, выдаче нарядов, обнаружению дефектов.

ИТП многоквартирного дома

Автоматизированный индивидуальный тепловой пункт в многоэтажном жилом здании транспортирует тепло от ЦТП, котельных или ТЭЦ (теплоэлектроцентраль) к отоплению, ГВС и вентиляции. Подобные новшества (автоматический тепловой пункт) сберегают до 40% и более тепловой энергии.

Внимание! Система использует источник — тепловые сети, к которым подключается. Необходимости согласования с этими организациями.

Множество данных требуется для расчетов режимов, нагрузки и результатов экономии для оплаты в ЖКХ. Без этой информации проект не будет выполнен. Без согласования ИТП не выдадут допуск к эксплуатации. Жильцы приобретают следующие выгоды.

  • Большая точность работы аппаратов по поддержанию температуры.
  • Подогрев производится с расчетом, включающим состояние наружного воздуха.
  • Снижаются суммы за услуги по счетам ЖКХ.
  • Автоматизация упрощает обслуживание объектов.
  • Снижаются затраты на ремонт, численность персонала.
  • Экономятся финансы на потребление тепловой энергии от централизованного поставщика (котельных, ТЭЦ, ЦТП).

Итог: как происходит экономия

Тепловой пункт системы отопления снабжают узлом учета при вводе, что является залогом экономии. С приборов снимают показания по расходу тепла. Сам учет не снижает расходы. Источник экономии — возможность смены режимов и отсутствие завышения показателей со стороны энергоснабжающих компаний, точное их определение. Невозможно будет списать на подобного потребителя дополнительные издержки, утечки, расходы. Окупаемость происходит в сроки 5 месяцев, как среднее значение с экономией до 30%.

Автоматизирована подача теплоносителя от централизованного поставщика — теплотрассы. Монтаж современного узла отопления и вентиляции позволяет учитывать при эксплуатации сезонные и суточные температурные изменения. Режим коррекции — автоматический. Теплопотребление уменьшается на 30% при окупаемости от 2 до 5 лет.

Тепловой пункт (ТП) - комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.

Назначение тепловых пунктов:

  • преобразование вида теплоносителя или его параметров;
  • контроль параметров теплоносителя;
  • учет тепловых нагрузок, расходов теплоносителя и конденсата;
  • регулирование расхода теплоносителя и распределение по системам потребления теплоты (через распределительные сети в ЦТП или непосредственно в системы ИТП);
  • защита местных систем от аварийного повышения параметров теплоносителя;
  • заполнение и подпитка систем потребления теплоты;
  • сбор, охлаждение, возврат конденсата и контроль его качества;
  • аккумулирование теплоты;
  • водоподготовка для систем горячего водоснабжения.

В тепловом пункте в зависимости от его назначения и местных условий могут осуществляться все перечисленные мероприятия или только их часть. Приборы контроля параметров теплоносителя и учета расхода теплоты следует предусматривать во всех тепловых пунктах.

Устройство ИТП ввода обязательно для каждого здания независимо от наличия ЦТП, при этом в ИТП предусматриваются только те мероприятия, которые необходимы для присоединения данного здания и не предусмотрены в ЦТП.

В закрытых и открытых системах теплоснабжения необходимость устройства ЦТП для жилых и общественных зданий должна быть обоснована технико-экономическим расчетом.

Виды тепловых пунктов

ТП различаются по количеству и типу подключенных к ним систем теплопотребления, индивидуальные особенности которых определяют тепловую схему и характеристики оборудования ТП, а также по типу монтажа и особенностям размещения оборудования в помещении ТП.

Различают следующие виды тепловых пунктов:

  • . Используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельностоящем сооружении.
  • Центральный тепловой пункт (ЦТП). Используется для обслуживания группы потребителей (зданий, промышленных объектов). Чаще располагается в отдельностоящем сооружении, но может быть размещен в подвальном или техническом помещении одного из зданий.
  • . Изготавливается в заводских условиях и поставляется для монтажа в виде готовых блоков. Может состоять из одного или нескольких блоков. Оборудование блоков монтируется очень компактно, как правило, на одной раме. Обычно используется при необходимости экономии места, в стесненных условиях. По характеру и количеству подключенных потребителей БТП может относиться как к ИТП, так и к ЦТП.

Центральные и индивидуальные тепловые пункты

Центральный тепловой пункт (ЦТП) позволяет сосредоточить все наиболее дорогостоящее и требующее систематического и квалифицированного наблюдения оборудования в удобных для обслуживания отдельно стоящих зданиях и благодаря этому значительно упростить последующие индивидуальные тепловые пункты (ИТП) в зданиях. Здания общественного назначения, размещаемые в жилых микрорайонах, - школы, детские учреждения должны иметь самостоятельные ИТП, оборудованные регуляторами. ЦТП должны размещаться на границах микрорайонов (кварталов) между магистральными, распределительными сетями и квартальными.

При водяном теплоносителе оборудование тепловых пунктов состоит из циркуляционных (сетевых) насосов, водо-водяных теплообменников, аккумуляторов горячей воды, повысительных насосов, приборов для регулирования и контроля параметров теплоносителя, приборов и устройств для защиты от коррозии и накипеобразования местных установок горячего водоснабжения, приборами для учета расхода теплоты, а также автоматическими устройствами для регулирования отпуска теплоты и поддержания заданных параметров теплоносителя в абонентских установках.

Принципиальная схема теплового пункта

Схема теплового пункта зависит, с одной стороны, от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны, от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Система отопления также представляет замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно. По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления. Для восполнения потерь служит система подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.

Тепловые пункты промышленных предприятий

Промышленное предприятие должно, как правило, иметь один центральный тепловой пункт (ЦТП) для регистрации, учета и распределения теплоносителя, получаемого из тепловой сети. Количество и размещение вторичных (цеховых) тепловых пунктов (ИТП) определяется размерами и взаимным размещением отдельных цехов предприятия. ЦТП предприятия должен быть размещен в отдельном помещении; на крупных предприятиях, особенно при получении кроме горячей воды также и пара, - в самостоятельном здании.

Предприятие может иметь цехи как с однородным характером внутренних тепловыделений (удельный вес в общей нагрузке), так и с разным. В первом случае температурный режим всех зданий определяется в ЦТП, во втором – различным и устанавливаться на ИТП. Температурный график для промышленных предприятий должен отличаться от бытового, по которому обычно работают городские теплосети. Для подгонки температурного режима в тепловых пунктах предприятий должны устанавливаться смесительные насосы, которые при единообразии характера тепловыделений по цехам могут быть установлены в одном ЦТП, при отсутствии единообразия – в ИТП.

Проектирование тепловых систем промышленных предприятий должно проводиться с обязательным использованием вторичных энергоресурсов, под которыми понимаются:

  • отходящие от печей горячие газы;
  • продукты технологических процессов (нагретые слитки, шлаки, раскаленный кокс и пр.);
  • низкотемпературные энергоресурсы в виде отработавшего пара, горячей воды от различных охлаждающих устройств и производственные тепловыделения.

Для теплоснабжения обычно используются энергоресурсы третьей группы, которые имеют температуры в пределах от 40 до 130°С. Предпочтительным является их использование для нужд ГВС, поскольку эта нагрузка имеет круглогодичный характер.

При централизованном теплоснабжении тепловой пункт может бытьместным - индивидуальным (ИТП) для теплопотребляющих систем конкретного здания игрупповым - центральным (ЦТП) для систем группы зданий. ИТП размещается в специальном помещении здания, ЦТП чаще всего представляет собой отдельно стоящее одноэтажное строение. Проектирование тепловых пунктов ведётся в соответствии с нормативными правилами.
Роль теплогенератора при независимой схеме присоединения теплопотребляющих систем к наружной тепловой сети выполняет водяной теплообменник.
В настоящее время применяют так называемые скоростные теплообменники различных типов. Кожухотрубный водяной теплообменник состоит из стандартных секций длиной до 4 м. Каждая секция представляет собой стальную трубу диаметром до 300 мм, внутрь которой помещены несколько латунных трубок. В независимой схеме системы отопления или вентиляции греющая вода из наружного теплопровода пропускается по латунным трубкам, нагреваемая - противотоком в межтрубном пространстве, в системе горячего водоснабжения нагреваемая водопроводная вода пропускается по трубкам, а греющая вода из тепловой сети - в межтрубном пространстве. Более совершенный и значительно более компактный, пластинчатый теплообменник, набирается из определённого количества стальных профилированных пластин. Греющая и нагреваемая вода протекает между пластинами противотоком или перекрёстно. Длину и число секций кожухотрубного теплообменника или размеры и число пластин в пластинчатом теплообменнике определяют в результате специального теплового расчета.
Для нагревания воды в системах горячего водоснабжения, особенно в индивидуальном жилом доме, больше подходит не скоростной, а емкостной водонагреватель. Его объём определяется исходя из расчётного количества одновременно работающих точек водоразбора и предполагаемых индивидуальных особенностей водопотребления в доме.
Общим для всех схем, является применение насоса для искусственного побуждения движения воды в теплопотребляющих системах. В зависимых схемах насос помещают на тепловой станции, и он создаёт давление, необходимое для циркуляции воды, как в наружных теплопроводах, так и в местных теплопотребляющих системах.
Насос, действующий в замкнутых кольцах систем, заполненных водой, не поднимает, а только перемещает воду, создавая циркуляцию, и поэтому называется циркуляционным. В отличие от циркуляционного насоса насос в системе водоснабжения перемещает воду, поднимая её к точкам разбора. При таком использовании насос называют повысительным.
В процессах заполнения и возмещения потери (утечки) воды в системе отопления циркуляционный насос не участвует. Заполнение происходит под воздействием давления в наружных теплопроводах, в водопроводе или, если этого давления недостаточно, с помощью специального подпиточного насоса.
До последнего времени циркуляционный насос включался, как правило, в обратную магистраль системы отопления для увеличения срока службы деталей, взаимодействующих с горячей водой. Вообще же для создания циркуляции воды в замкнутых кольцах местоположение циркуляционного насоса безразлично. При необходимости несколько понизить гидравлическое давление в теплообменнике или котле насос может быть включён и в подающую магистраль системы отопления, если его конструкция рассчитана на перемещение более горячей воды. Все современные насосы обладают этим свойством и устанавливаются чаще всего после теплогенератора (теплообменника). Электрическая мощность циркуляционного насоса определяется количеством перемещаемой воды и развиваемым при этом давлением.
В инженерных системах, как правило, применяют специальные бесфундаментные циркуляционные насосы, перемещающие значительное количество воды и развивающие сравнительно небольшое давление. Это бесшумные насосы, соединённые в единый блок с электродвигателями и закрепляемые непосредственно на трубах. В систему включают два одинаковых насоса, действующих попеременно: при работе одного из них второй находится в резерве. Запорная арматура (задвижки или краны) до и после обоих насосов (действующего и бездействующего) постоянно открыты, особенно, если предусмотрено автоматическое их переключение. Обратный клапан в схеме препятствует циркуляции воды через бездействующий насос. Легко монтируемые бесфундаментные насосы иногда устанавливают в системах по одному. При этом резервный насос хранят на складе.
Понижение температуры воды в зависимой схеме со смешением до допустимой происходит при смешении высокотемпературной воды с обратной (охлаждённой до заданной температуры) водой местной системы. Снижение температуры теплоносителя осуществляется путем смешения обратной воды от инженерных систем при помощи смесительного аппарата - насоса или водоструйного элеватора. Насосная смесительная установка имеет преимущество перед элеваторной. Ее КПД выше, в случае аварийного повреждения наружных теплопроводов возможно, как и при независимой схеме присоединения, сохранение циркуляции воды в системах. Смесительный насос можно применять в системах со значительным гидравлическим сопротивлением, тогда как при использовании элеватора потери давления в теплопотребляющей системе должны быть сравнительно небольшими. Водоструйные элеваторы получили широкое распространение благодаря безотказному и бесшумному действию.
Внутреннее пространство всех элементов теплопотребляющих систем (труб, отопительных приборов, арматуры, оборудования и т. д.) заполнено водой. Объём воды в процессе эксплуатации систем претерпевает изменения: при повышении температуры воды он увеличивается, при понижении температуры - уменьшается. Соответственно изменяется внутреннее гидростатическое давление. Эти изменения не должны отражаться на работоспособности систем и, прежде всего, не должны приводить к превышению предела прочности любых их элементов. Поэтому в систему вводится дополнительный элемент - расширительный бак.
Расширительный бак может бытьоткрытым, сообщающимся с атмосферой, и закрытым, находящимся под переменным, но строго ограниченным избыточным давлением. Основное назначение расширительного бака - приём прироста объёма воды в системе, образующегося при её нагревании. При этом в системе поддерживается определённое гидравлическое давление. Кроме того, бак предназначен для восполнения убыли объёма воды в системе при небольшой утечке и при понижении её температуры, для сигнализации об уровне воды в системе и управления действием подпиточных устройств. Через открытый бак удаляется вода в водосток при переполнении системы. В отдельных случаях открытый бак может служить воздухоотводчиком из системы.
Открытый расширительный бак размещают над верхней точкой системы (на расстоянии не менее 1 м) в чердачном помещении или в лестничной клетке и покрывают тепловой изоляцией. Иногда (например, при отсутствии чердака) устанавливают неизолированный бак в специальном утепленном боксе (будке) на крыше здания.
Современная конструкция закрытого расширительного бака представляет собой стальной цилиндрический сосуд, разделённый на две части резиновой мембраной. Одна часть предназначена для воды системы, вторая заполнена в заводских условиях инертным газом (обычно азотом) под давлением. Бак может быть установлен непосредственно на пол котельной или теплового пункта, а также закреплён на стене (например, при стеснённых условиях в помещении).
В крупных теплопотребляющих системах группы зданий расширительные баки не устанавливаются, а гидравлическое давление регулируется при помощи постоянно действующих подпиточных насосов. Эти насосы также возмещают обычно имеющие место потери воды через неплотные соединения труб, в арматуре, приборах и других местах систем.
Помимо рассмотренного выше оборудования в котельной или тепловом пункте размещаются устройства автоматического регулирования, запорно-регулирующая арматура и контрольно-измерительные приборы, с помощью которых обеспечивается текущая эксплуатация системы теплоснабжения. Используемая при этом арматура, а также материал и способы прокладки теплопроводов рассмотрены в разделе "Отопление зданий".

Тепловые пункты: устройство, работа, схема, оборудование

Тепловой пункт представляет собой комплекс технологического оборудования, которое используется в процессе теплоснабжения, вентиляции и горячего водоснабжения потребителей (жилых и производственных зданий, строительных площадок, объектов социального назначения). Главное назначение тепловых пунктов - это распределение тепловой энергии от тепловой сети между конечными потребителями.

Преимущества установки тепловых пунктов в системе теплоснабжения потребителей

Среди преимуществ тепловых пунктов можно назвать следующие:

  • минимизация тепловых потерь
  • сравнительно низкие эксплуатационные затраты, экономичность
  • возможность выбора режима теплоснабжения и теплопотребления в зависимости от времени суток и сезона
  • бесшумная работа, малые габариты (по сравнению с другим оборудованием системы теплообеспечения)
  • автоматизация и диспетчеризация процесса эксплуатации
  • возможность изготовления по индивидуальному заказу

Тепловые пункты могут иметь разные тепловые схемы, типы систем теплопотребления и характеристики используемого оборудования, что зависит от индивидуальных требований Заказчика. Комплектация ТП определяется на основе технических параметров тепловой сети:

  • тепловые нагрузки на сеть
  • температурный режим холодной и горячей воды
  • давление систем тепло- и водоснабжения
  • возможные потери давления
  • климатические условия и т.д.

Виды тепловых пунктов

Вид необходимого теплового пункта зависит от его назначения, количества подводящих теплосистем, количества потребителей, способу размещения и монтажа и выполняемых пунктом функций. В зависимости от вида теплового пункта выбирается его технологическая схема и комплектация.

Тепловые пункты бывают следующих видов:

  • индивидуальные тепловые пункты ИТП
  • центральные тепловые пункты ЦТП
  • блочные тепловые пункты БТП

Открытые и закрытые системы тепловых пунктов. Зависимые и независимые схемы подключения тепловых пунктов

В открытой системе теплоснабжения вода для работы теплового пункта поступает непосредственно из теплосетей. Водозабор может быть полным или частичным. Объем воды, забранный для нужд теплового пункта, восполняется поступлением воды в теплосеть. Следует отметить, что водоподготовка в таких системах осуществляется только на входе в теплосеть. Из-за этого качество воды, поступающей потребителю, оставляет желать лучшего.

Открытые системы, в свою очередь, могут быть зависимыми и независимыми.

В зависимой схеме подключения теплового пункта к тепловой сети теплоноситель из теплосетей попадает непосредственно в систему отопления. Такая система достаточно проста, так как в ней отсутствует необходимость установки дополнительного оборудования. Хотя эта же особенность ведет к существенному недостатку, а, именно, к невозможности регулирования подачи тепла потребителю.

Независимые схемы подключения теплового пункта характеризуются экономической выгодой (до 40%), так как в них между оборудованием конечных потребителей и источником теплоэнергии установлены теплообменники тепловых пунктов, которые регулируют количество подаваемого тепла. Также неоспоримым преимуществом является повышение качества подаваемой воды.

В связи с энергоэффективностью независимых систем многие тепловые компании реконструируют и модернизируют свое оборудование из зависимых систем в независимые.

Закрытая система теплоснабжения является полностью изолированной системой и использует циркулирующую воду в трубопроводе без забора ее из тепловых сетей. Такая система использует воду только в качестве теплоносителя. Утечка теплоносителя возможна, но вода восполняется автоматически при помощи регулятора подпитки.

Количество теплоносителя в закрытой системе остается постоянным, а выработка и распределение тепла потребителю регулируется температурой теплоносителя. Закрытая система характеризуется высоким качеством водоподготовки и высокой энергоэффективностью.

Способы обеспечения потребителей тепловой энергией

По способу обеспечения потребителей тепловой энергией различают одноступенчатые и многоступенчатые тепловые пункты.

Одноступенчатая система характеризуются непосредственным присоединение потребителей к тепловым сетям. Место присоединение называется абонентским вводом. Для каждого объекта теплопотребления должен быть предусмотрен свое технологическое оборудование (подогреватели, элеваторы, насосы, арматура, оборудование КИПиА и др.).

Недостатком одноступенчатой системы подключения является ограничение предела допустимого максимального давления в теплосетях из-за опасности высокого давления для радиаторов отопления. В связи с этим такие системы, в основном, используют для небольшого количества потребителей и для тепловых сетей небольшой длины.

Многоступенчатые системы подключения характеризуются наличием тепловых пунктов между источником тепла и потребителем.

Индивидуальные тепловые пункты

Индивидуальные тепловые пункты обслуживают одного мелкого потребителя (дом, небольшое строение или здание), который уже подключен к системе центрального теплоснабжения. Задача такого ИТП - обеспечение потребителя горячей водой и отоплением (до 40 кВт). Существуют крупные индивидуальные пункты, мощность которых может достигать 2 МВт. Традиционно ИТП размещают в подвале или техническом помещении здания, реже их располагают в отдельно стоящих помещениях. К ИТП подключают только теплоноситель и осуществляют подвод водопроводной воды.

ИТП состоят из двух контуров: первый контур - это контур отопления для поддержания заданной температуры в отапливаемом помещении при помощи датчика температуры; второй контур - это контур горячего водоснабжения.

Центральные тепловые пункты

Центральные тепловые пункты ЦТП применяют для теплообеспечения группы зданий и сооружений. ЦТП выполняют функцию обеспечения потребителей ГВС, ХВС и теплом. Степень автоматизации и диспетчеризации центральных тепловых пунктов (только контроль за параметрами или контроль/управление параметрами ЦТП) определяется Заказчиком и технологическими нуждами. ЦТП могут иметь как зависимую, так и независимую схему подключения к тепловой сети. При зависимой схеме подключения теплоноситель в самом тепловой пункте разделяется на систему отопления и систему горячего водоснабжения. В независимой схеме подключения теплоноситель нагревается во втором контуре теплового пункта поступающей водой из тепловой сети.

Они поставляются на монтажную площадку в полной заводской готовности. На месте последующей эксплуатации осуществляется только подключение к теплосетям и настройка оборудования.

Оборудование центрального теплового пункта (ЦТП) включает в себя следующие элементы:

  • подогреватели (теплообменники) - секционные, многоходовые, блочного типа, пластинчатые - в зависимости от проекта, для горячего водоснабжения, поддерживающие нужную температуру и напор воды у водоразборных точек
  • циркуляционные хозяйственные, противопожарные, отопительные и резервные насосы
  • смесительные устройства
  • тепловые и водомерные узлы
  • контрольно-измерительные приборы КИП и автоматики
  • запорно-регулирующая арматура
  • расширительный мембранный бак

Блочные тепловые пункты (модульные тепловые пункты)

Блочный (модульный) тепловой пункт БТП имеет блочное исполнение. БТП может состоять из более, чем одного блока (модуля), смонтированных, зачастую, на одной объединенной раме. Каждый модуль является независимым и законченным пунктом. При этом регулирование работой общее. Блоснче тепловые пункты могут иметь как локальную систему управления и регулирования, так и дистанционное управление и диспетчеризацию.

В состав блочного теплового пункта могут входить как индивидуальные тепловые пункты, так и центральные тепловые пункты.

Основные системы теплоснабжения потребителей в составе теплового пункта

  • система горячего водоснабжения (открытая или закрытая схема подключения)
  • система отопления (зависимая или независимая схема подключения)
  • система вентиляции

Типовые схемы подключения систем в тепловых пунктах

Типовая схема подключения системы ГВС


Типовая схема подключения системы отопления


Типовая схема подключения системы ГВС и отопления


Типовая схема подключения системы ГВС, отопления и вентиляции


В состав теплового пункта также входит система холодного водоснабжения, но она не является потребителем тепловой энергии.

Принцип работы тепловых пунктов

Тепловая энергия поступает на тепловые пункты от теплогенерирующих предприятий посредством тепловых сетей - первичных магистрельных теплосетей. Вторичные, или разводящие, теплосети соединяют ТП уже с конечным потребителем.

Магистральные теплосети обычно имеют большую протяженность, соединяя источник тепла и непосредственно тепловой пункт, и диаметр (до 1400 мм). Зачастую магистральные тепловые сети могут объединять несколько теплогенерирующих предприятий, что увеличивает надежность обеспечения потребителей энергией.

Перед поступление в магистральные сети вода проходит водоподготовку, которая приводит химические показатели воды (жесткость, рН, содержание кислорода, железа) в соответствии с нормативными требованиями. Это необходимо для того, чтобы снижать уровень коррозионного влияния воды на внутреннюю поверхность труб.

Разводящие трубопроводы имеют сравнительно малую протяженность (до 500 м), соединяя тепловой пункт и уже конечного потребителя.

Теплоноситель (холодная вода) поступает по подающему трубопроводу в тепловой пункт, где проходит через насосы системы холодного водоснабжения. Далее он (теплоноситель) использует первичные подогреватели ГВС и подается в циркуляционный контур системы горячего водоснабжения, откуда поступает уже к конечному потребителю и обратно в ТП, постоянно циркулируя. Для поддержания необходимой температуры теплоносителя, он постоянно подогревается в подогревателе второй ступени ГВС.

Система отопления - это такой же замкнутый контур, как и система ГВС. В случае возникновения утечек теплоносителя, его объем восполняется из системы подпитки теплового пункта.

Затем теплоноситель поступает в обратный трубопровод и поступает опять на теплогенерирующее предприятие по магистральным трубопроводам.

Типовая комплектация тепловых пунктов

Для обеспечения надежной эксплуатации тепловых пунктов они поставляются со следующим минимальным технологическим оборудованием:

  • два пластинчатых теплообменника (паяные или разборные) для системы отопления и системы ГВС
  • насосная станция для перекачки теплоносителя к потребителю, а именно - к отопительным приборам здания или сооружения
  • система автоматического регулирования количества и температуры теплоносителя (датчики, контроллеры, расходомеры) для контроля параметров теплоносителя, учета тепловых нагрузок и регулирования расхода
  • система водоподготовки
  • технологическое оборудование - запорная арматура, обратные клапаны, контрольно-измерительные приборы, регуляторы

Следует отметить, что комплектация теплового пункта технологическим оборудованием во многом зависит от схемы подключения системы горячего водоснабжения и схемы подключения системы отопления.

Так, например, в закрытых системах устанавливаются теплообменники, насосы и оборудование водоподготовки для дальнейшего распределения теплоносителя между системой ГВС и системой отопления. А в открытых системах устанавливаются смесительные насосы (для смешения горячей и холодной воды в нужной пропорции) и регуляторы температуры.

Наши специалисты оказывают весь комплекс услуг, начиная с проектирования, производства, поставки, и заканчивая монтажом и пуско-наладкой тепловых пунктов различной комплектации.

С. Дейнеко

Индивидуальный тепловой пункт - важнейшая составляющая систем теплоснабжения зданий. От его характеристик во многом зависит регулирование систем отопления и ГВС, а также эффективность использования тепловой энергии. Поэтому тепловым пунктам уделяется большое внимание в ходе термомодернизаций зданий, масштабные проекты которых в ближайшем будущем планируется воплотить в жизнь в различных регионах Украины

Индивидуальный тепловой пункт (ИТП) — комплекс устройств, расположенный в обособленном помещении (как правило, в подвальном помещении), состоящий из элементов, обеспечивающих присоединение системы отопления и горячего водоснабжения к централизованной тепловой сети. По подающему трубопроводу осуществляется подача теплоносителя в здание. С помощью второго обратного трубопровода в котельную попадает уже охлажденный теплоноситель из системы.

Температурный график работы тепловой сети определяет то, в каком режиме тепловой пункт будет работать в дальнейшем и какое оборудование необходимо в нем устанавливать. Различают несколько температурных графиков работы тепловой сети:

  • 150/70°С;
  • 130/70°С;
  • 110/70°С;
  • 95 (90)/70°С.

Если температура теплоносителя не превышает 95°С, то его остается только распределить по всей отопительной системе. В этом случае возможно применять только коллектор с балансировочными клапанами для гидравлической увязки циркуляционных колец. Если же температура теплоносителя превышает 95°С, то такой теплоноситель нельзя напрямую использовать в системе отопления без его температурной регулировки. Именно в этом и заключается важная функция теплового пункта. При этом необходимо, чтобы температура теплоносителя в системе отопления изменялась в зависимости от изменения температуры наружного воздуха.

В тепловых пунктах старого образца (рис. 1, 2) в качестве регулирующего устройства применялся элеваторный узел. Это позволяло существенно снизить стоимость оборудования, однако с помощью такого ТП было невозможно осуществлять точную регулировку температуры теплоносителя, особенно при переходных режимах работы системы. Элеваторный узел обеспечивал только «качественную» регулировку теплоносителя, когда температура в системе отопления изменяется в зависимости от температуры теплоносителя, приходящего от централизованной тепловой сети. Это приводило к тому, что «регулировка» температуры воздуха в помещениях производилась потребителями при помощи открытого окна и с огромными тепловыми затратами, уходящими в никуда.

Рис. 1.
1 - подающий трубопровод; 2 - обратный трубопровод; 3 - задвижки; 4 - водомер; 5 - грязевики; 6 - манометры; 7 - термометры; 8 - элеватор; 9 - нагревательные приборы системы отопления

Поэтому минимальные изначальные капиталовложения выливались в финансовые потери в долгосрочной перспективе. Особенно низкая эффективность работы элеваторных узлов проявилась с ростом цен на тепловую энергию, а также с невозможностью работы централизованной тепловой сети по температурному или гидравлическому графику, на который были рассчитаны установленные ранее элеваторные узлы.


Рис. 2. Элеваторный узел «советской» эпохи

Принцип работы элеватора заключается в том, чтобы смешивать теплоноситель из централизованной тепловой сети и воду из обратного трубопровода системы отопления до температуры, соответствующей нормативной для данной системы. Это происходит за счет принципа эжекции при использовании в конструкции элеватора сопла определенного диаметра (рис. 3). После элеваторного узла смешанный теплоноситель подается в систему отопления здания. Элеватор совмещает одновременно два устройства: циркуляционный насос и смесительное устройство. На эффективность смешения и циркуляции в системе отопления не влияют колебания теплового режима в тепловых сетях. Вся регулировка заключается в правильном подборе диаметра сопла и обеспечения необходимого коэффициента смешения (нормативный коэффициент 2,2). Для работы элеваторного узла нет необходимости подводить электрический ток.

Рис. 3. Принципиальная схема конструкции элеваторного узла

Однако имеются многочисленные недостатки, которые сводят на нет всю простоту и неприхотливость обслуживания данного устройства. На эффективность работы напрямую влияют колебания гидравлического режима в тепловых сетях. Так, для нормального смешения, перепад давлений в подающем и обратном трубопроводах необходимо поддерживать в пределах 0,8 - 2 бар; температура на выходе из элеватора не поддается регулировке и напрямую зависит только от изменения температуры тепловой сети. В этом случае, если температура теплоносителя, поступающего из котельной, не соответствует температурному графику, то и температура на выходе из элеватора будет ниже необходимой, что напрямую повлияет на внутреннюю температуру воздуха в помещениях здания.

Подобные устройства получили широкое применение во многих типах зданий, подключенных к централизованной тепловой сети. Однако в настоящее время они не соответствуют требованиям по энергосбережению, в связи с чем подлежат замене на современные индивидуальные тепловые пункты. Их стоимость значительно выше и для работы обязательно требуется электропитание. Но, в то же время, эти устройства более экономны - позволяют снизить энергопотребление на 30 - 50%, что с учетом роста цен на теплоноситель позволит уменьшить срок окупаемости до 5 - 7 лет, а срок службы ИТП напрямую зависит от качества используемых элементов управления, материалов и уровня подготовки технического персонала при его обслуживании.

Современные ИТП

Энергосбережение достигается, в частности, за счет регулирования температуры теплоносителя с учетом поправки на изменение температуры наружного воздуха. Для этих целей в каждом тепловом пункте применяют комплекс оборудования (рис. 4) для обеспечения необходимой циркуляции в системе отопления (циркуляционные насосы) и регулирования температуры теплоносителя (регулирующие клапаны с электрическими приводами, контроллеры с датчиками температуры).

Рис. 4. Принципиальная схема индивидуального теплового пункта и использованием контроллера , регулирующего клапана и циркуляционного насоса

Большинство тепловых пунктов имеет в своем составе также теплообменник для подключения к внутренней системе горячего водоснабжения (ГВС) с циркуляционным насосом. Набор оборудования зависит от конкретных задач и исходных данных. Именно поэтому, из-за различных возможных вариантов конструкции, а также своей компактности и транспортабельности, современные ИТП получили название модульных (рис. 5).


Рис. 5. Современный модульный индивидуальный тепловой пункт в сборе

Рассмотрим использование ИТП в зависимых и независимых схемах подключения системы отопления к централизованной тепловой сети.

В ИТП с зависимым присоединением системы отопления к внешним тепловым сетям циркуляция теплоносителя в отопительном контуре поддерживается циркуляционным насосом. Управление насосом осуществляется в автоматическом режиме от контроллера или от соответствующего блока управления. Автоматическое поддержание необходимого температурного графика в отопительном контуре также осуществляется электронным регулятором. Контролер воздействует на регулирующий клапан, расположенный на подающем трубопроводе на стороне внешней тепловой сети («острой воде»). Между подающим и обратным трубопроводами установлена смесительная перемычка с обратным клапаном, за счет которой осуществляется подмес в подающий трубопровод из обратной линии теплоносителя, с более низкими температурными параметрами (рис. 6).

Рис. 6. Принципиальная схема модульного теплового пункта, подключенного по зависимой схеме:
1 - контроллер; 2 - двухходовой регулирующий клапан с электрическим приводом; 3 - датчики температуры теплоносителя; 4 - датчик температуры наружного воздуха; 5 - реле давления для защиты насосов от сухого хода; 6 - фильтры; 7 - задвижки; 8 - термометры; 9 - манометры; 10 - циркуляционные насосы системы отопления; 11 - обратный клапан; 12 - блок управления циркуляционными насосами

В данной схеме работа системы отопления зависит от давлений в центральной тепловой сети. Поэтому во многих случаях потребуется установка регуляторов перепада давления, а, в случае необходимости, и регуляторов давления «после себя» или «до себя» на подающем или на обратном трубопроводах.

В независимой системе для присоединения к внешнему источнику тепла используется теплообменник (рис. 7). Циркуляция теплоносителя в системе отопления осуществляется циркуляционным насосом. Управление насосом производится в автоматическом режиме контролером или соответствующим блоком управления. Автоматическое поддержание необходимого температурного графика в нагреваемом контуре также осуществляется электронным регулятором. Контроллер воздействует на регулируемый клапан, расположенный на подающем трубопроводе на стороне внешней тепловой сети («острой воде»).


Рис. 7. Принципиальная схема модульного теплового пункта, подключенного по независимой схеме:
1 - контроллер; 2 - двухходовой регулирующий клапан с электрическим приводом; 3 - датчики температуры теплоносителя; 4 - датчик температуры наружного воздуха; 5 - реле давления для защиты насосов от сухого хода; 6 - фильтры; 7 - задвижки; 8 - термометры; 9 - манометры; 10 - циркуляционные насосы системы отопления; 11 - обратный клапан; 12 - блок управления циркуляционными насосами; 13 - теплообменник системы отопления

Достоинством данной схемы является то, что отопительный контур независим от гидравлических режимов централизованной тепловой сети. Также система отопления не страдает от несоответствия качества входящего теплоносителя, поступающего из центральной тепловой сети (наличия продуктов коррозии, грязи, песка и т.д.), а также перепадов давления в ней. В то же время стоимость капитальных вложений при применении независимой схемы больше - по причине необходимости установки и последующего обслуживания теплообменника.

Как правило, в современных системах применяются разборные пластинчатые теплообменники (рис. 8), которые достаточно просты в обслуживании и ремонтопригодны: при потере герметичности или выходе из строя одной секции, теплообменник возможно разобрать, а секцию заменить. Также, при необходимости, можно повысить мощность путем увеличения количества пластин теплообменника. Кроме того, в независимых системах применяют паяные неразборные теплообменники.

Рис. 8. Теплообменники для независимых систем подключения ИТП

Согласно ДБН В.2.5-39:2008 «Инженерное оборудование зданий и сооружений. Внешние сети и сооружения. Тепловые сети», в общем случае предписано подсоединение систем отопления по зависимой схеме. Независимая схема предписана для жилых зданий с 12 и более этажами и других потребителей, если это обусловлено гидравлическим режимом работы системы или техническим заданием заказчика.

ГВС от теплового пункта

Наиболее простой и распространенной является схема с одноступенчатым параллельным присоединением подогревателей горячего водоснабжения (рис. 9). Они присоединены к той же тепловой сети, что и системы отопления зданий. Вода, из наружной водопроводной сети подается в подогреватель ГВС. В нем она нагревается сетевой водой, поступающей из подающего трубопровода тепловой сети.

Рис. 9. Схема с зависимым присоединением системы отопления к тепловой сети и одноступенчатым параллельным присоединением теплообменника ГВС

Охлажденная сетевая вода подается в обратный трубопровод тепловой сети. После подогревателя горячего водоснабжения нагретая водопроводная вода подается в систему ГВС. Если приборы в этой системе закрыты (к примеру, в ночное время), то горячая вода по циркуляционному трубопроводу снова подается в подогреватель ГВС.

Эту схему с одноступенчатым параллельным присоединением подогревателей горячего водоснабжения рекомендуется применять, если отношение максимального расхода теплоты на ГВС зданий к максимальному расходу теплоты на отопление зданий менее 0,2 или более 1,0. Схема используется при нормальном температурном графике сетевой воды в тепловых сетях.

Кроме того, применяется двухступенчатая система подогрева воды в системе ГВС. В ней в зимний период холодная водопроводная вода сначала подогревается в теплообменнике первой ступени (с 5 до 30 ˚С) теплоносителем из обратного трубопровода системы отопления, а затем для окончательного догрева воды до необходимой температуры (60 ˚С) используется сетевая вода из подающего трубопровода тепловой сети (рис. 10). Идея состоит в том, чтобы использовать для нагрева бросовую тепловую энергию обратной линии от системы отопления. При этом сокращается расход сетевой воды на подогрев воды в системе ГВС. В летний период нагрев происходит по одноступенчатой схеме.

Рис. 10. Схема теплового пункта с зависимым присоединением системы отопления к тепловой сети и двухступенчатым нагревом воды

Требования к оборудованию

Важнейшей характеристикой современного теплового пункта является наличие приборов учета тепловой энергии, что в обязательном порядке предусмотрено ДБН В.2.5-39:2008 «Инженерное оборудование зданий и сооружений. Внешние сети и сооружения. Тепловые сети».

Согласно разделу 16 указанных норм, в тепловом пункте должно быть размещено оборудование, арматура, устройства контроля, управления и автоматизации, с помощью которых осуществляют:

  • регулирование температуры теплоносителя по погодным условиям ;
  • изменение и контроль параметров теплоносителя;
  • учет тепловых нагрузок, затрат теплоносителя и конденсата;
  • регулирование затрат теплоносителя;
  • защиту локальной системы от аварийного повышения параметров теплоносителя;
  • доочистку теплоносителя;
  • заполнение и подпитку систем отопления;
  • комбинированное теплообеспечение с использованием тепловой энергии от альтернативных источников.

Подсоединение потребителей к теплосети должно осуществляться по схемам с минимальными затратами воды, а также экономией тепловой энергии за счет установки автоматических регуляторов теплового потока и ограничения затрат сетевой воды. Не допускается присоединение системы отопления к тепловой сети через элеватор вместе с автоматическим регулятором теплового потока.

Предписано использовать высокоэффективные теплообменники с высокими теплотехническими и эксплуатационными характеристиками и малыми габаритами. В наивысших точках трубопроводов тепловых пунктов следует устанавливать воздухоотводчики, причем рекомендуется применять автоматические устройства с обратными клапанами. В нижних точках следует устанавливать штуцеры с запорными кранами для спуска воды и конденсата.

На вводе в тепловой пункт на подающем трубопроводе следует устанавливать грязевик, а перед насосами, теплообменниками, регулирующими клапанами и счетчиками воды - сетчатые фильтры. Кроме того, фильтр-грязевик необходимо устанавливать на обратной линии перед регулирующими устройствами и приборами учета. По обе стороны от фильтров следует предусмотреть манометры.

Для защиты каналов ГВС от накипи нормами предписано использовать устройства магнитной и ультразвуковой обработки воды. Принудительная вентиляция, которой необходимо обустраивать ИТП, рассчитывается на кратковременное действие и должна обеспечивать 10-кратный обмен с неорганизованным приливом свежего воздуха через входные двери.

Во избежание превышения уровня шума, ИТП не допускается располагать рядом, под или над помещениями жилых квартир, спален и комнат игр детсадов и т.д. Кроме того, регламентируется, что установленные насосы должны быть с допустимым низким уровнем шума.

Тепловой пункт следует оснащать средствами автоматизации, приборами теплотехнического контроля, учета и регулирования, которые устанавливают на месте или на щите управления.

Автоматизация ИТП должна обеспечивать:

  • регулирование затрат тепловой энергии в системе отопления и ограничение максимального расхода сетевой воды у потребителя;
  • заданную температуру в системе ГВС;
  • поддержание статического давления в системах потребителей теплоты при их независимом присоединении;
  • заданное давление в обратном трубопроводе или необходимый перепад давления воды в подающем и обратном трубопроводах тепловых сетей;
  • защиту систем теплопотребления от повышенного давления и температуры;
  • включение резервного насоса при отключении основного рабочего и др.

Помимо того, современные проекты предусматривают обустройство удаленного доступа к управлению тепловыми пунктами. Это позволяет организовать централизованную систему диспетчеризации и осуществлять контроль за работой систем отопления и ГВС. Поставщиками оборудования для ИТП являются ведущие компании-производители соответствующего теплотехнического оборудования, например: системы автоматики - Honeywell (США), Siemens (Германия), Danfoss (Дания); насосы - Grundfos (Дания), Wilo (Германия); теплообменники - Alfa Laval (Швеция), Gea (Германия) и др.

Стоит также отметить, что современные ИТП включают достаточно сложное оборудование, которое требует периодического технического и сервисного обслуживания, заключающегося, к примеру, в промывке сетчатых фильтров (не реже 4 раз в год), чистке теплообменников (минимум 1 раз в 5 лет) и т.д. При отсутствии надлежащего технического обслуживания оборудование теплового пункта может прийти в негодность или выйти из строя. Примеры тому в Украине, к сожалению, уже есть.

В то же время, существуют подводные камни при проектировании всего оборудования ИТП. Дело в том, что в отечественных условиях температура в подающем трубопроводе централизованной сети часто не соответствует нормируемой, которую указывает теплоснабжающая организация в технических условиях, выдаваемых для проектирования.

При этом разница в официальных и реальных данных может быть довольно существенной (например, в реальности поставляется теплоноситель с температурой не более 100˚С вместо указанных 150˚С, или наблюдается неравномерность температуры теплоносителя со стороны центральной тепловой по времени суток), что соответственно, влияет на выбор оборудования, его последующую эффективность работы и, в итоге, на его стоимость. По этой причине рекомендуется при реконструкции ИТП на этапе проектирования, проводить замеры реальных параметров теплоснабжения на объекте и учитывать их в дальнейшем при расчетах и выборе оборудования. При этом из-за возможного несоответствия параметров, оборудование стоит проектировать с запасом в 5-20 %.

Реализация на практике

Первые современные энергоэффективные модульные ИТП в Украине были установлены в Киеве в период 2001 - 2005 гг. в рамках реализации проекта Всемирного банка «Энергосбережение в административных и общественных зданиях». Всего было смонтировано 1173 ИТП. К настоящему времени по причине не решенных ранее вопросов периодического квалифицированного технического обслуживания порядка 200 из них пришли в негодность или требуют ремонта.

Видео. Реализованный проект с применением индивидуального теплового пункта в многоквартирном жилом доме, экономия до 30% теплоэнергии

Модернизация установленных ранее тепловых пунктов с организацией удаленного доступа к ним является одним из пунктов программы «Термосанация в бюджетных учреждениях г. Киева» с привлечением кредитных средств Северной экологической финансовой корпорации (NEFCO) и грантов «Фонда Восточного партнерства по энергоэффективности и окружающей среде» (E5P).

Помимо того, в минувшем году Всемирный банк объявил о старте масштабного шестилетнего проекта, направленного на повышение энергоэффективности теплоснабжения в 10 городах Украины. Бюджет проекта составляет 382 млн. долларов США. Направлены они будут, в частности, и на установку модульных ИТП. Планируется также ремонт котельных, замена трубопроводов и установка счетчиков тепловой энергии. Намечено, что проект поможет в снижении издержек, повышении надежности обслуживания и улучшении общего качества теплоты, поступающей свыше 3 млн. украинцам.

Модернизация теплового пункта - одно из условий повышения энергоэффективности здания в целом. В настоящее время кредитованием внедрения данных проектов занимается ряд украинских банков, в том числе и в рамках государственных программ. Подробнее об этом можно прочитать в предыдущем номере нашего журнала в статье «Термомодернизация: что именно и за какие средства ».

Больше важных статей и новостей в Telegram-канале AW-Therm . Подписывайтесь!

Просмотрено: 183 224