Растения в космосе: инструкция по применению. Салат в космосе

Смогут ли земляне когда-нибудь засеивать поля на других планетах? Чтобы можно было вслед за космонавтами и мечтателями пропеть, что «и на Марсе будут яблони цвести»? Возможно, совсем скоро мы ответим на этот вопрос. А пока - давайте поговорим о некоторых конкретных космических исследованиях, которые ставили своей целью изучение поведения растений в условиях гравитации.

Эта работа публикуется в рамках конкурса научно-популярных статей , проведенного на конференции «Биология - наука 21 века» в 2015 году.

Наверное, у многих возник вопрос: неужели у растений тоже есть поведение? Разве это свойство живых существ не является прерогативой представителей исключительно животного мира? Оказывается - нет! Представьте себе, у растений тоже есть свои «фишки», в том числе: чувствительность к внешним раздражителям, разные рецепторные процессы, специфические реакции на свет, температуру, силу тяжести. И - что очень любопытно - растения обладают удивительной способностью определять свое положение в пространстве. Вот об этом удивительном феномене растительного мира я и предлагаю поговорить.

Гравитация: маленький шаг для растения и огромный скачок для ученого

Кстати говоря, арабидопсис - самое первое растение, которое не только проявило себя в опытах по влиянию отсутствия гравитации на рост, но и прошло полный цикл развития в космосе, успешно перенеся воздействие всех неблагоприятных внеземных условий.

Фитогормоны: растения тоже чувствуют!

Рисунок 3. Корневой статоцит в вертикальном положении. А - проксимальная часть клетки (расположенная ближе к центру). В - дистальная часть клетки (периферическая). 1 - клеточная стенка, 2 - эндоплазматический ретикулум , 3 - плазмодесма , 4 - ядро, 5 - митохондрия , 6 - цитоплазма, 7 - статолит, 8 - корень, 9 - корневой чехлик, 10 - статоцит. Рисунок из «Википедии ».

Давайте задумаемся над вопросом: как же растения понимают, где у них низ, а где верх? Человек, например, в любой момент времени может определить, стоит ли он на земле или лежит беспомощный (за эту способность определять свое место в пространстве можно сказать спасибо вестибулярному аппарату). А обездвиженным и безмолвным растениям приходится изощряться другими способами.

Так, у представителей растительного царства есть специальная группа клеток-статоцитов , которые содержат специфические тяжелые структуры, быстро оседающие под действием гравитации (рис. 3). Эти образования называются статолитами .

Допустим, растение пригнулось к земле - отлично, в игру вступают статолиты, которые «падают» вниз (то есть осаждаются) под воздействием силы тяжести. В итоге формируются новые низ (там, где статолиты) и верх (где их нет). Далее запускается целый каскад реакций, призванных преобразовать физический процесс осаждения статолитов в биохимические процессы, которые в итоге ведут к гравитропическому ответу. Это явление очень сложно и до конца не изучено; можно с определенностью сказать лишь то, что в нем задействуется целая сеть различных посредников, вторичных мессенджеров и, конечно же, фитогормонов . Да-да, представьте себе, у растений тоже есть свои гормоны - пусть не такие популярные в плане исследований, как гормоны животных, но всё же не менее интересные и важные. Эти вещества способны оказывать целый спектр биологических воздействий. Но я предлагаю поговорить об ауксине (он же - индол-3-уксусная кислота, ИУК ) как о важном участнике гравитропической реакции .

Так, при «перевороте» растения происходит накопление ИУК на нижней стороне гравистимулированного органа (как растение определяет свой верх и низ, мы уже обсуждали выше). Это приводит к различной скорости роста клеток на противоположных сторонах побега и корня. Получается, что ауксин - это определяющий фактор формирования гравитропического изгиба . Однако было бы несправедливо оставить в стороне помощников ауксина - специальные PIN-белки (от англ. pin - булавка), которые транспортируют его к месту воздействия . Таких белков-переносчиков в клетке очень много, их классификация довольно сложна, но суть заключается в том, что именно от типа и количества этих белков зависит, куда пойдет ауксин. Получается, что если PIN-белков много на нижней стороне корня, то там будет и ауксин, чтобы простимулировать его рост.

И наконец мы подходим к такому интересному моменту, как распределение PIN-белков в пространстве клетки. Ведь сами белки, хоть и называются переносчиками, лишены возможности произвольного перемещения. Их распределение регулируется цитоскелетом . У клеток растений тоже есть свой скелет, и представлен он не костями и хрящами, а специальными веществами: актином , тубулином и миозином . Важно, что именно эти структурные полимеры определяют подвижность большинства компонентов клетки. Актиновый цитоскелет - это словно раскинувшаяся по всему объему клетки огромная сеть дорог, по которой обеспечивается транспорт большинства соединений .

А еще - актиновый цитоскелет очень сложно увидеть: для этого было бы недостаточно даже применения очень сильного микроскопа. Дело даже не в чрезвычайно малых размерах данной структуры, а в визуализации* - ведь человеческий глаз не способен различать эти тонкие ниточки, из которых состоят микрофиламенты , даже при очень большом увеличении. И здесь нам на помощь приходят трансгенные растения . Уверена, что многие из вас так или иначе слышали о них, причем большей частью плохое. На самом же деле трансгенные растения - это универсальный инструментарий биолога, без которого нельзя представить работу любой современной физиологической лаборатории.

* - Как преодолеть дифракционный барьер и различить детали размером меньше полудлины волны мы писали в статье «Лучше один раз увидеть, или микроскопия сверхвысокого разрешения » , а о лауреатах Нобелевской премии за разработку методов сверхразрешающей микроскопии - в материале «По ту сторону дифракционного барьера: Нобелевская премия по химии 2014 » . В сообщении « » описан новый метод приготовления микропрепаратов, который позволяет существенно улучшить разрешение . - Ред.

Итак, «трансгены» - это те же самые растения (в нашем случае - арабидопсис), просто снабженные специальными белками для создания новой экспериментальной модели. Получается, мы берем резуховидку Таля и внедряем в ее ДНК ген зеленого флуоресцентного белка (GFP , green fluorescent protein ). А затем исследуем трансформированное растение под особым конфокальным микроскопом , подсвечивая лазером. И, как говорится, voila - получаем на выходе цифровое изображение, на котором прекрасно видны внутренние структуры, в частности актиновый цитоскелет, который и был нам нужен (рис. 4) .

* - Значимость GFP для биологических экспериментов оказалась настолько высока, что за открытие этого маркера вручили Нобелевскую премию: « » . Однако ученые не удовлетворились и явили миру новые поколения флуоресцентных белков: « » . - Ред .

Рисунок 4. Так выглядит актиновый цитоскелет корня, если подсветить его лазером конфокального микроскопа. Яркие тонкие нити - микрофиламенты, границы клеток светятся менее ярко. Масштабная линейка равна 50 мкм. Фото автора.

Новые направления: что же будет дальше?

Возможно, кого-то заинтересует, зачем нужны подобные исследования с использованием конфокальной микроскопии и где они выполняются? Поведение растений в космосе - глобальная тема исследований, над которой работают многие научные умы. Однако я могу назвать конкретное место, где тоже происходит активнейшее изучение процессов гравитропизма, - это кафедра физиологии и биохимии растений Санкт-Петербургского государственного университета. Именно здесь были сделаны конкретные экспериментальные заключения, о которых и пойдет речь ниже. В том числе по той причине, что я - студентка этой кафедры и работаю над магистерской диссертацией (за помощь хочется поблагодарить Ресурсный центр «Развитие молекулярных и клеточных технологий» СПбГУ, а особенно - их замечательный конфокальный микроскоп Leica TCS SPE).

А теперь, познакомившись с основным инструментарием, обратимся непосредственно к результатам проведенных экспериментов. Фундаментальной проблемой, интересовавшей нас в ходе работы, было поведение растений в космосе, и для ее решения мы проводили опыты по гравистимуляции растительных образцов с дальнейшей визуализацией актинового цитоскелета. Была поставлена задача сравнить корни контрольных (вертикально растущих) и гравистимулированных (расположенных горизонтально) растений арабидопсиса, а также исследовать действие на них различных реагентов.

Выяснилось, что в нормально (вертикально) развивающихся растениях находится очень много аксиально ориентированных микрофиламентов - то есть тех, которые сонаправлены с вектором силы тяжести. А вот в случае гравистимуляции, когда арабидопсис оказывается лежащим на боку, происходят изменения - в частности, увеличивается доля тех актиновых нитей, которые расположены наклонно или перпендикулярно поверхности Земли. Это значит, что корень действительно узнает, что низ и верх теперь не там, где были раньше, и уже через 20–30 минут после этой «смены полюсов» начинает активно подстраиваться под новые условия за счет переориентации своего цитоскелета. Данные механизмы лежат в основе формирования гравитропического изгиба - структуры, которую мы так долго и упорно обсуждали.

Еще более интересные результаты были получены в случае действия на такие же растения разнообразных реагентов (рис. 5). Известно, что при стрессе (например, во время гравистимуляции) в клетках растений начинает синтезироваться гормон стресса - этилен , который подавляет процессы роста корней и развитие побега, но не препятствует гравитропической реакции. При дополнительной обработке корней арабидопсиса раствором этефона (из которого образуется этилен) обнаруживалась почти тотальная разборка цитоскелета, и чем дольше растение подвергалось такому воздействию, тем больше разрушались актиновые микрофиламенты. Гравитропический изгиб образовывался, но корень был значительно короче.

Салициловая кислота ускоряла реорганизацию цитоскелета и в целом угнетала гравитропическую реакцию за счет подавления синтеза этилена. То есть корни растения не воспринимали переворот на 90 градусов в качестве стресса: ведь этилен, призванный сигнализировать о стрессовых изменениях, не выделялся. Однако по прошествии часа действие салицилата ослабевало, и растение, ощутив стресс, могло формировать изгиб.

А вот при удалении Cа 2+ из клеточных стенок с помощью раствора EGTA (которая способствует связыванию ионов кальция) образование гравитропического изгиба полностью ингибировалось.

Подводя итог, можно сказать, что все эти вещества оказывают свои собственные эффекты на рост растения, причем способны как подавлять стресс, так и усиливать действие гравистимуляции.

Рисунок 5. Растения, которые подверглись различным воздействиям. В верхней строчке - нормальное (вертикальное) положение корней, в нижней - гравистимулированные (перевернутые) корни. В случае EGTA использовали два красителя: циановым цветом показан актиновый цитоскелет, а цветом фуксии - ядра клеток. Фото автора.

Варианты вертикального и горизонтального (в случае поворота растения на 90 градусов по часовой стрелке) роста арабидопсиса в течение 12 часов. Col-0 - дикий тип, GFP-fABD2 - растения Col-0, трансформированные конструкцией GFP-fABD2. В случае гравистимулированных образцов (справа ) наблюдается формирование гравитропического изгиба под влиянием изменения вектора гравитации. Стрелкой показаны кончики корней, клетки которых служили объектом для исследования актинового цитоскелета.

На самом деле, это исследование только начинается. Нам еще предстоят новые эксперименты, связанные с обработкой резуховидок Таля различными активаторами и ингибиторами роста, регуляторами транспорта ауксина. К слову, оформленных научных статей еще нет: ведь работа не прекращается, буквально каждую неделю можно говорить о новых результатах.

Думаю, может возникнуть вопрос: зачем вообще нужны эти эксперименты? Чтобы лучше разобраться в механизмах стрессовой реакции в условиях смены вектора гравитации. Это поможет лучше понять, что именно испытывают растения в условиях невесомости.

Когда будет жизнь на Марсе?

Идея запланированного полета людей на Марс с целью создания там колонии не нова, однако споры вокруг этого вопроса начались с того самого момента, как идея впервые была высказана. Скептиков и тогда, и сейчас находится очень и очень много.

В одной из недавно опубликованных статей утверждается, что с некоторой долей вероятности марсианский корабль может стать кораблем-призраком, если на Солнце во время полета произойдет незапланированная вспышка . Доза радиации при этом возрастет на порядок и легко убьет экипаж.

Однако технологии постоянно развиваются - пусть медленно, если речь идет о межпланетных путешествиях, но всё же... Уже созданы проекты космических кораблей с уникальной защитной экранирующей поверхностью, способной обеспечить надежную защиту на весь срок полета, а потому проблему радиации можно считать теоретически решенной.

В той же статье автор высказыват мнение о том, что человек в принципе не способен долгое время существовать и работать рядом с одними и теми же людьми. Космонавты в один прекрасный день могут поубивать друг друга просто из-за того, что кто-то кому-то наступит на ногу. А всему виною стресс, особенно от того, что в «мышеловке» марсолёта помощи ждать неоткуда и спасательных капсул для побега на Землю не предусмотрено.

Стресс убивает, это правда. Но давайте заглянем на страничку проекта Mars One (рис. 6), в раздел «Отбор кандидатов» - и мы увидим, что способность справляться со сложными и конфликтными ситуациями (так называемая стрессоустойчивость) является, пожалуй, основным критерием отбора будущих астронавтов. К тому же участники проекта - это люди, которые сами захотели кардинально изменить свою жизнь, в отличие от профессиональных космонавтов, которым ставят конкретные задачи, часто не считаясь с их личным мнением.

Во всяком случае, время для колонизации Марса пока еще не настало, и впереди у нас как минимум десять лет. Ну а кандидатам, уже выбранным по конкурсу для участия в проекте, предстоят длительные тренинги и тщательное обучение на Земле. Что из этого получится - увидим!

Возвращаясь к результатам наших сугубо лабораторных экспериментов, следует сказать, что они имеют важное значение именно для фундаментальной науки. Однако хочется надеяться, что когда-нибудь именно эти исследования лягут в основу проектов по выращиванию свежих овощей и фруктов на космических кораблях или даже на других планетах (напомню, что пока лишь единичные экспериментальные образцы пшеницы и салата смогли пройти полный цикл вегетации в космических условиях). Интерес к внеземным пространствам сопровождал развитие цивилизации, хоть под этим пространством и подразумевалось совершенно разное. Сейчас же для удовлетворения своего интереса человечество способно разрабатывать конкретные планы, моделировать условия, чтобы потом согласно расчетам и результатам экспериментов «расстелить соломку» везде, где только можно. Глядишь, и зацветет марсианский сад?..

Международная космическая программа Mars One уже достаточно обсуждалась в прессе. Набор кандидатов, решивших приобрести билет в один конец, завершен. Теперь руководителям проекта предстоит колоссальная задача по подготовке всех необходимых условий, чтобы облегчить начало колонизации Красной планеты (рис. 7). Колонисты ставят масштабные задачи по преобразованию Марса: предполагается растопить там лед, вызвать парниковый эффект и, когда стабилизируется круговорот воды, засеять планету растениями. А пока что мы просто изучаем поведение растительных организмов в надежде на успешное освоение новых космических пространств.

Рисунок 7. Одна из основных задач научной экспедиции - изучить влияние Марса на растения, а затем и на собственные тела. Рисунок с сайта eggheado.com . . ;

  • Экспансионная микроскопия, или Как увидеть новое сквозь старую линзу ;
  • Флуоресцирующая Нобелевская премия по химии ;
  • Флуоресцентные белки: разнообразнее, чем вы думали! ;
  • Паевский А. (2015). Замечтались . Научно-образовательный проект ТАСС «Чердак». .
  • Человечеству потребовались все знания, собранные учёными за сотни лет, чтобы начать космические полёты. И тогда человек столкнулся с новой проблемой - для колонизации других планет и дальних перелётов нужно разработать замкнутую экосистему, в том числе - обеспечить космонавтов едой, водой и кислородом. Доставлять еду на Марс, который находится за 200 миллионов километров от Земли, дорого и сложно, логичнее будет такие способы производства продуктов, которые легко реализовать в полёте и на Красной планете.

    Как на семена влияет микрогравитация? Какие овощи будут безвредны, если их вырастить в богатой тяжёлыми металлами почве Марса? Как обустроить плантацию на борту космического корабля? Учёные и космонавты уже более пятидесяти лет ищут ответы на эти вопросы.

    Константин Циолковский в «Целях звездоплавания» писал: «Вообразим себе длинную коническую поверхность или воронку, основание или широкое отверстие которой прикрыто прозрачной шаровой поверхностью. Она прямо обращена к Солнцу, а воронка вращается вокруг своей длинной оси (высоты). На непрозрачных внутренних стенках конуса - слой влажной почвы с насаженными в ней растениями». Так он предлагал искусственно создавать гравитацию для растений. Растения должны быть подобраны плодовитые, мелкие, без толстых стволов и не работающих на солнце частей. Так колонизаторов можно частично обеспечить биологически активными веществами и микроэлементами и регенерировать кислород и воду.

    В 1962 году главный конструктор ОКБ-1 Сергей Королёв ставил задачу: «Надо бы начать разработку «Оранжереи (ОР) по Циолковскому», с наращиваемыми постепенно звеньями или блоками, и надо начинать работать над «космическими урожаями».


    Рукопись К.Э. Циолковского «Альбом космических путешествий», 1933 год. Источник

    СССР вывел на орбиту первый искусственный спутник Земли 4 октября 1957 года, спустя двадцать два года после смерти Циолковского. Уже в ноябре того же года в космос отправили дворняжку Лайку, первую из собак, которые должны были открыть путь в космос людям. Лайка погибла от перегрева всего за пять часов, хотя полёт рассчитали на неделю - на это время хватило бы кислорода и еды.

    Полёт Белки и Стрелки в августе 1960 года был более успешен и для собак, и для сопровождающих их животных - сорока мышей и двух крыс. Вместе с этим «Ноевым ковчегом» советские учёные отправили в космос семена кукурузы, пшеницы, гороха и лука. На Землю вся команда спустилась в контейнере, разработанном для будущих полётов человека. Но этого было мало - заниматься сельским хозяйством в космосе должен был начать человек.


    Собака Лайка, первая собака на орбите Земли

    В книге «Космос - землянам» лётчик-космонавт, член экспедиции «Союз-3» Георгий Береговой писал о том, что человеку свойственно ощущать причастность к земной природе, где бы он ни был: «Но когда оказываешься за пределами родной планеты, это воспринимается особенно остро. Обратите внимание, с каким волнением и теплотой рассказывают космонавты о том, как выглядит Земля с высоты орбиты. Ну а если вместе с ними путешествует в безжизненной пустоте космоса кусочек живого мира, то забота о «земляках» становится прямо-таки нежной. Даже когда эти «земляки» - зеленые стебли обыкновенного гороха. Именно его, кстати, выращивали на «Салюте-4» А. Губарев и Г. Гречко, а затем вновь посадили участники следующей экспедиций - П. Климук и В. Севастьянов».

    На орбитальной станции «Салют-4», запущенной в 1974 году, была установка «Оазис» для культивирования растений в невесомости. Георгий Гречко писал в книге «Космонавт №34», что работа с системой была одним из самых интересных экспериментов в его полёте. Установка была гидропоническая, земли не было, горошины должны были прорастать в пропитанной марле. Вскоре после начала работы с «Оазисом» космонавт заметил, что в одну кювету вода не поступает, а в другую поступает слишком обильно, заставляя горошины подгнивать. Из установки срывались огромные капли воды, за которыми Гречко гонялся по станции с салфетками. Он отрезал шланг и стал поливать горошины вручную, пока несколько часов возился с аппаратом.

    Космонавт признаётся, что из-за ненависти к биологии в школе чуть не загубил эксперимент. Он посчитал, что ростки путаются в ткани, растут неправильно, и освободил их от марли, но это не помогало. Оказалось, что он перепутал корешки со стеблями.

    Эксперимент завершился успешно. Впервые в космосе растения прошли цикл от семени до взрослого стебля гороха. Но из 36 зерен взошли и выросли только три.


    «Оазис-1» в Мемориальном музее космонавтики. Источник

    Учёные предположили, что проблема возникла из-за генетически заложенной ориентации - проросток должен тянуться к свету, а корень - в противоположную сторону. Они усовершенствовали «Оазис», и следующая экспедиция взяла на орбиту новые семена.

    Лук вырос. Виталий Севастьянов сообщил на Землю, что стрелки достигли десяти-пятнадцати сантиметров. «Какие стрелки, какого лука? Понимаем, это шутка, мы же вам давали горох, а не луковицы», - говорили с Земли. Бортинженер ответил, что из дома космонавты прихватили две луковицы, чтобы посадить их сверх плана, и успокоил учёных - горошины почти все взошли.

    Но растения отказывались цвести. На этой стадии они погибали. Такая же судьба ждала тюльпаны, которые в установке «Лютик» на Северном полюсе распустились, а в космосе - нет.

    Зато лук можно было есть, что успешно делали в 1978 году космонавты В. Коваленок и А. Иванченков: «Вот хорошо поработали. Может быть, теперь нам в награду и луковицу разрешат съесть».


    Техника - молодёжи, 1983-04, страница 6. Горох в установке «Оазис»

    Космонавты В. Рюмин и Л. Попов в апреле 1980 года получили установку «Малахит» с цветущими орхидеями. Орхидеи крепятся в коре деревьев и в дуплах, и учёные посчитали, что они могут быть менее подвержены геотропизму - способности органов растений располагаться и расти в определённом направлении относительно центра земного шара. Цветки через несколько дней опали, но при этом у орхидей образовались новые листья и воздушные корни. Ещё чуть позже советско-вьетнамский экипаж из В. Горбатко и Фам Туай привёзли с собой подрощенный арабидопсис.

    Растения не хотели цвести. Семена всходили, но, например, орхидея не зацвела в космосе. Учёным нужно было помочь растениям справиться с невесомостью. Это делали в том числе с помощью электростимуляции корневой зоны: учёные считали, что электромагнитное поле Земли может влиять на рост. Ещё один способ предполагал описанный Циолковским план по созданию искусственной гравитации - растения выращивались в центрифуге. Центрифуга помогла - ростки ориентировались вдоль вектора центробежной силы. Наконец космонавты добились своего. В «Светоблоке» зацвёл Арабидопсис.

    Слева на изображении ниже - оранжерея «Фитон» на борту «Салют-7». Впервые в этой орбитальной оранжерее Резуховидка Таля (Арабидопсис) прошла полный цикл развития и дала семена. Посредине - «Светоблок», в которой на борту «Салют-6» Арабидопсис впервые зацвёл. Справа - бортовая оранжерея «Оазис-1А» на станции «Салют-7»: она была оснащена системой дозированного полуавтоматического полива, аэрации и электростимулирования корней и могла перемещать вегетационные сосуды с растениями относительно источника света.


    «Фитон», «Светоблок» и «Оазис-1А»


    Установка «Трапеция» для исследования роста и развития растений. Источник


    Наборы с семенами


    Бортовой журнал станции «Салют-7», зарисовки Светланы Савицкой

    На станции «Мир» была установлена первая в мире автоматическая оранжерея «Свет». Российские космонавты в 1990-2000-х годах провели в этой оранжерее шесть экспериментов. Они растили салаты, редис и пшеницу. В 1996-1997 годах Институт медико-биологических проблем РАН планировал вырастить семена растений, полученные в космосе - то есть поработать с двумя поколениями растений. Для эксперимента выбрали гибрид дикой капусты высотой около двадцати сантиметров. У растения был один минус - космонавтам нужно было заниматься опылением.

    Результат был интересный - семена второго поколения в космосе получили, и они даже взошли. Но растения выросли до шести сантиметров вместо двадцати пяти. Маргарита Левинских, научный сотрудник Института медико-биологических проблем РАН, рассказывает, что ювелирную работу по опылению растений выполнял американский астронавт Майкл Фоссум.


    Видео Роскосмоса о выращивании растений в космосе. На 4:38 - растения на станции «Мир»

    В апреле 2014 года грузовой корабль Dragon SpaceX доставил на Международную космическую станцию установку для выращивания зелени Veggie, а в марте астронавты начали тестировать орбитальную плантацию. Установка контролирует свет и поступление питательных веществ. В августе 2015 в меню астронавтов включили свежую зелень, выращенную в условиях микрогравитации.


    Выращенный на Международной космической станции салат


    Так плантация на космической станции может выглядеть в будущем

    В российском сегменте Международной космической станции действует оранжерея «Лада» для эксперимента «Растения-2». В конце 2016 или начале 2017 года на борту появится версия «Лада-2». Над этими проектами работает Институт медико-биологических проблем РАН.

    Космическая растениеводство не ограничивается экспериментами в невесомости. Человеку для колонизации других планет придётся развивать сельское хозяйство на грунте, который отличается от земного, и в атмосфере, имеющей иной состав. В 2014 году биолог Майкл Маутнер вырастил спаржу с картофелем на метеоритном грунте. Чтоб получить пригодную для выращивания почву, метеорит был размолот в порошок. Опытным путём он сумел доказать, что на грунте внеземного происхождения могут произрасти бактерии, микроскопические грибы и растения. Материал большинства астероидов содержит фосфаты, нитраты и иногда воду.


    Спаржа, выросшая на метеоритном грунте

    В случае с Марсом, где много песка и пыли, измельчение породы не понадобится. Но возникнет другая проблема - состав почвы. В грунте Марса есть тяжёлые металлы, повышенное количество которых в растениях опасно для человека. Учёные из Голландии имитировали марсианскую почву и с 2013 года вырастили на ней десять урожаев нескольких видов растений.

    В результате эксперимента учёные выяснили, что содержание тяжёлых металлов в выращенных на имитированном марсианском грунте горохе, редисе, ржи и помидорах не опасно для человека. Картофель и другие культуры учёные продолжают исследовать.


    Исследователь Вагер Вамелинк инспектирует растения, выращиваемые на имитированной марсианской почве. Фото: Joep Frissel/AFP/Getty Images


    Содержание металлов в урожае, собранном на Земле и на симуляциях почвы Луны и Марса

    Одной из важных задач является создание замкнутого цикла жизнеобеспечения. Растения получают углекислый газ и отходы жизнедеятельности экипажа, взамен отдают кислород и производят еду. Учёные проверяли возможность использования в пищу одноклеточной водоросли хлореллы, содержащей 45% белка и по 20% жиров и углеводов. Но эта в теории питательная еда не усваивается человеком из-за плотной клеточной стенки. Существуют способы решения данной проблемы. Можно расщеплять клеточные стенки технологическими методами, используя термообработку, мелки помол или другие способы. Можно брать с собой разработанные специально для хлореллы ферменты, которые космонавты будут принимать с едой. Учёные могут и вывести ГМО-хлореллу, стенку которой человеческие ферменты смогут расщепить. Хлореллой для питания в космосе сейчас не занимаются, но используют в замкнутых экосистемах для производства кислорода.

    Эксперимент с хлореллой проводили на борту орбитальной станции «Салют-6». В 1970-е годы ещё считали, что пребывание в микрогравитации не оказывает отрицательного влияния на человеческий организм - слишком было мало информации. Изучить влияние на живые организмы пытались и с помощью хлореллы, жизненный цикл которой длится всего четыре часа. Её удобно было сравнивать с хлореллой, выращенной на Земле.


    Источник


    Прибор ИФС-2 предназначался для выращивания грибов, культур тканей и микроорганизмов, водных животных. Источник

    С 70-х годов в СССР проводили эксперименты по замкнутым системам. В 1972 году началась работа «БИОС-3» - эта система действует и сейчас. Комплекс оснащён камерами для выращивания растений в регулируемых искусственных условиях - фитотронами. В них выращивали пшеницу, сою, салат чуфу, морковь, редис, свёклу, картофель, огурцы, щавель, капусту, укроп и лук. Учёные смогли достичь почти на 100% замкнутый цикл по воде и воздуху и до 50-80% - по питанию. Главные цели Международного центра замкнутых экологических систем - изучить принципы функционирования таких систем различной степени сложности и разработать научные основы их создания.

    Одним из громких экспериментов, симулирующих перелёт к Марсу и возвращение на Землю, был «Марс-500». В течение 519 дней шесть добровольцев находились в замкнутом комплексе. Эксперимент организовали Рокосмос и Российская академия наук, а партнёром стало Европейское космическое агентство. На “борту корабля” были две оранжереи - в одной рос салат, в другой - горох. В данном случае целью было не вырастить растения в приближенных к космическим условиям, а выяснить, насколько растения важны для экипажа. Поэтому дверцы оранжереи заклеили непрозрачной плёнкой и установили датчик, фиксирующий каждое открывание. На фото слева член экипажа «Марс-500» Марина Тугушева работает с оранжереями в рамках эксперимента.

    Ещё один эксперимент на «борту» «Марс-500» - GreenHouse. В видео ниже член экспедиции Алексей Ситнев рассказывает об эксперименте и показывает оранжерею с различными растениями.

    У человека будет много шансов умереть на Марсе. Он рискует разбиться при посадке, замёрзнуть на поверхности или же просто не долететь. И, конечно, умереть от голода. Растениеводство необходимо для образования колонии, и учёные и космонавты работают в этом направлении, показывая удачные примеры выращивания некоторых видов не только в условиях микрогравитации, но и в имитированном грунте Марса и Луны. У космических колонистов определенно будет возможность повторить успех Марка Уотни.

    54 года назад, 12 апреля 1961 года Юрий Алексеевич Гагарин – первый космонавт Земли, совершил первый в мире полет в космос на корабле «Восток». Наш космонавт очень интересовался цветами. А какие цветы он любил больше всего, вы узнаете из подборки любопытных фактов дуэта «растение и космос».

    Интересные факты о растениях и космосе:

    1. В 1980 году на борт космической станции «Салют-6» были отправлены тюльпаны. Ученые предполагали, что цветы зацветут в космосе. К сожалению, тогда чуда не случилось – тюльпаны завяли на следующий день. По возвращении из полета, космонавт В. Ляхов отчаянно произнес: «Судя по всему, в космосе никто жить не может!». Но Герои Советского Союза тоже могут ошибаться.
    2. Но космонавты, вооружившись терпением, продолжили исследования. Иначе как можно исследовать такую глубину, как космос? И, надев цветочные скафандры, в космос отравились . Они продержались в суровых условиях космоса целых полгода! Даже образовались новые листочки и воздушные корни. Однако цветы опали сразу же по прибытию в космос.
    3. Арабидопсис (Arabidopsis Thaliana) – Гагарин среди цветов. Он побывал в космосе в 1982 году. Арабидопсис расцвел и даже дал семена в условиях полного отсутствия гравитации.
    4. А Юрию Алексеевичу по нраву были ромашки. Согласитесь, скромные маленькие солнышки замечательно характеризуют их поклонника: такой же скромный и лучезарный.
    5. Интересно, а на ромашки растут? Если растут на Марсе, то они там синего или фиолетового цвета от листьев до корней. А если на , то желтого или оранжевого.
    6. В космосе цветы и пахнуть будут иначе, чем на Земле. Аромат цветка зависит от многих условий. И некоторые умело этим пользуются. Запахи различных видов роз, выращенных на космическом корабле Дискавери, дали основу для духов «Zen» от Shiseido.
    7. Деревья тоже хотят в космос! В 2004 году бонсай-сосна отправилась на воздушных шарах бороздить просторы Вселенной. Эта идея пришла в голову японскому художнику, который совместно с компанией, запускающей в полет космические корабли, ее и осуществил. За компанию с сосной полетел большой цветочный букет. Эта великолепная композиция летала на высоте 30 километров над Землей.
    8. Оказывается, есть цветок, который тесно связан с неизведанным космосом, но при этом, он никуда и не думал летать. Этот цветок – космос. Во-первых, он так и называется. Во-вторых, он такой же загадочный и манящий. Шоколадный космос (Chocolate Cosmos) долгое время считался исчезнувшим. Но, к счастью, предусмотрительные биологи начала XX века успели собрать семена с последнего экземпляра этого неуловимого растения. Цветок в буквальном смысле хочется съесть – он имеет ярко выраженный запах шоколада.
    9. За растениями для разработки новых лекарств – в космос! Клетки женьшеня, прожив 75 дней на МКС, стали более продуктивными и эффективными. Осталось только сохранить эти чудесные свойства, чтобы создавать волшебные пилюли от всех болезней.
    10. Канадские ученые разработали «Лунный оазис». Это своего рода переносной парник, в котором учтены все условия для выращивания различных культур и растений. В будущем они надеются отправить парник на Луну, чтобы проверить работоспособность оазиса. По словам разработчиков, это позволит обеспечивать свежими фруктами и овощами будущих переселенцев с Земли.
    11. Похожие исследования ведут и российские ученые. Еще с конца 90-х годов они трудятся над созданием космической оранжереи. На МКС есть оранжерея «Лада», в которой выращивают картофель, редис, ячмень и др. Однако целей преследуют много: от чисто научных интересов до снятия стресса космонавтов во внеземных условиях.
    12. Японские ученые совместно с индийскими проводят исследования в условиях микрогравитации. «Космические умы» этих стран хотят проследить изменения биологических функций растений. Для начала выращивать будут обыкновенные водоросли. Посмотрим, может и суши можно будет поесть в космическом ресторане?

    В наши дни космическое питание доставляется на МКС с Земли, и все космические экспедиции снабжаются пищей еще с космодрома. Но недалек тот день, когда пища космонавтов будет производиться прямо в космосе. Уже сегодня ведутся активные исследования по выращиванию и производству еды в космосе. Впереди нас ждет многолетняя экспедиция на Марс, возможно, даже его колонизация, поэтому вопрос выращивания еды в космосе как нельзя актуален.

    История

    Космическая индустрия очень молода. Покорение космоса началось лишь во второй половине 20-ого века, но развивалось семимильными шагами во время космической гонки. Сегодня к исследованиям космоса присоединился Китай, Япония и даже Франция. Такая компания стран, во главе с космическими державами - Россией и США, продолжает исследование космоса. Многое изменилось со временем первого полета человека в космос, в том числе и питание космонавтов. Но одно осталось неизменным - пища для космонавтов как доставлялась с Земли, так и доставляется до сих пор.

    На МКС постоянно проживают космонавты разных стран, и вопрос их пропитания всегда решается с Земли. Доставка 1 килограмма еды обходится примерно в 5-6 тысяч долларов США. Но это не главный аргумент в пользу выращивания еды в космосе. Главный аргумент - ограниченные возможности по объемам перевозки. И если сегодня мы можем регулярно доставлять еду на МКС партиями, то в случае с долгими экспедициями, например на Марс, важно придумать, как космонавты могут снабжать себя продуктами питания самостоятельно.

    Так как космонавты целиком и полностью зависят от Земли, в истории МКС есть и неприятные моменты, связанные с пищей. Несколько лет назад, космический носитель с грузом для российских космонавтов не смог долететь до орбиты. Большую часть груза составляла именно еда. Это была очередная порция космической пищи, призванная пополнить запасы уже заканчивающейся еды. Ситуация осложнялась еще тем, что следующий запуск ракеты с едой для космонавтов, можно было осуществить лишь через продолжительное время. Это было связано не только с особенностями космического полета, но также с необходимостью выяснить причины падения первой ракеты, и снаряжения повторной миссии. Ситуация разрешилась гладко - наземные космические службы смогли вовремя разрешить все трудности. Но реальный прецедент дал определенный толчок для развития исследований на тему выращивания еды в космосе.

    Актуальное состояние

    NASA провело два успешных эксперимента по выращиванию еды на МКС. Для этого на МКС была создана специальная система выращивания растений, получившая название Veggie. Оба раза выращивались листья салата, и оба раза эксперимент завершился успехом. Первый урожай был послан на Землю, для детального исследования. Второй урожай, в августе 2015-ого, был съеден на МКС под объективами камер в прямом эфире. Запись этого события вы можете увидеть на ролике:

    Эксперименты показали, что салат, выращенный в космосе, по своим питательным свойствам ничем не отличается от земного. Скорость его роста и прочие показатели - также соотсветвует земным. Но данный эксперимент показал, что выращивание еды в космосе при нынешнем уровне технологий - это нерациональное занятие.

    Чтобы вырастить еду в космосе требуется большое количество энергии, а также места. В результате, сегодня проще и выгоднее доставить еду с Земли. Но первые шаги были сделаны, и получены важные данные. Например, что для выращивания растений зеленого цвета необходимы специальные лампы. И хотя растения в искусственных условиях могут вырасти без солнечного света, но для привычного цвета растений, необходимо добавлять специальное освещение. А главное, был получен ответ на самый волнующий вопрос - да, в космосе действительно можно выращивать пищу.

    Космонавты действительно съели второй космический урожай, но о полноценном обеспечении себя питанием речи не шло. Листья салата были выращены при колоссальных затратах энергии, и росли они 33 дня. Сюда стоит добавить, что на МКС ограниченное количество пространства, поэтому решить вопрос пропитания увеличением «посевных» площадей, просто невозможно. Но эксперимент показал, что в условиях невесомости растения могут расти не только в горизонтальной «земле». В космосе растениям все равно в какой проекции находится «почва». Кроме этого, опыт наглядно иллюстрирует, что для выращивания еды в космосе нужно столько же воды, как и на Земле, и что H2O невозможно заменить каким - либо веществом.

    На МКС выращивают не только еду, но и цветы. В конце 2015-ого года на МКС впервые раскрылся бутон астры. Это стало еще одним доказательством, что выращивание растений в космосе - реальность.

    Будущее

    Ученые со всего мира работают над тем, чтобы выращивать в космосе столько пищи, чтобы ее хватало для 100% пропитания космонавтов. Сегодня нельзя говорить даже об 1%, но через какое-то время нас ждут долгие экспедиции и колонизации планет. Будущее - за выращиванием еды в космосе.

    Ближайший длительный перелет запланирован в 2030-ом году экспедицией NASA на марс. Перелет будет проходить от 150 до 300 дней, и в этом полете людям наверняка понадобится источник пищи, производимой на борту. Вместимость космического аппарата ограничена, и его способности перевезти груз - тоже. Семена, или молодые растения, занимают меньше места и обладают меньшим весом. Ученым предстоит найти оптимальное решение для обеспечения условий произрастания сельскохозяйственных культур. Вопрос не только в «почве», но и в поливе растений. Ученым еще не удалось научиться заменять воду. Даже в эксперименте NASA, для проращивания салата, использовалось столько же воды, сколько и на Земле. А вода в космосе это не менее ценный ресурс. Конвертация воды в еду, в условиях ограниченного пространства - пока что происходит по невыгодному курсу. Но этот вопрос будет решен.

    Из ближайших планов - вырастить на МКС не только салат, но и другие растения. На очереди находятся следующие культуры - зеленый перец, редис, лук, капуста и картошка. Набор не случайный, эти овощи являются потенциальными кандидатами для выращивания на космических «огородах» будущего. Как вы могли заметить, ученые планируют выращивать культуры, чьи плоды находятся не только над землей, но и корнеплоды - редис и картошка. Для этого разрабатывается аппарат другого типа, отличный от аппарата Veggie для салата.

    Над выращиванием еды в космосе работают не только в России и США, но и в Китае. Китайское космическое агентство планирует создать лунную станцию к 2030-ому году. На ней отдельное место уделено выращиванию еды. На станции «Лунный дворец-1» (временное название), планируется выделить 58 кв. метров для выращивания еды. Это для космоса беспрецедентно большое помещение для выращивания растений, и даже больше, чем модуль для жизни космонавтов на будущей лунной станции. Пока что китайские ученые лишь испытали аналог лунной станции на Земле, и эксперимент оказался удачным. По результатам этого эксперимента стало понятно, что проект жизнеспособен, но китайские ученые внесли коррективы в космический модуль для выращивания еды. К 2030-ому году, возможно, мы увидим его в действии.

    Радует, что эксперименты по выращиванию еды в космосе не просто продолжаются, но и становятся все более и более частыми. Мы надеемся, что в ближайшем будущем еда космонавтов , хотя бы частично, но будет производиться в космосе. Это снизит зависимость от Земли и откроет новые горизонты для космических экспедиций.

    Растения в космосе - это не только важная тема современных прикладных научных исследований, но и уникальная возможность проникнуть в глобальные тайны растительного мира.

    Почему растения в космосе не цветут? Как и по какой причине меняется биохимическая структура их организма? Возможна ли полноценная растительная жизнь в космосе? На эти и многие другие вопросы предстояло или еще предстоит ответить ученым, прежде чем зазеленеют межпланетные космические корабли, а в будущем, возможно, и далекие планеты.

    Наш мир полон загадок, невидимых связей, не выявленных закономерностей. Даже притом, что обычно мы ограничиваем свои представления окружающим нас земным миром, а ведь за его пределами еще лежит Космос, в отношении которого у нас куда больше теорий, догадок и предположений, нежели чем реальных фактов.

    Рождение «растительной космонавтики»

    К. Э. Циолковский, «отец космонавтики», первым заговорил о необходимости использования высших растений в качестве средства обеспечения людей кислородом и питанием в длительных космических полетах.

    Более полувека назад под руководством С. П. Королева на втором космическом корабле-спутнике начались первые эксперименты по воздействию факторов космического полета на растения. Тогда стали «космонавтами» и успешно вернулись на Землю традесканция, хлорелла, семена лука, гороха, пшеницы, кукурузы.

    Проведенный на Земле анализ показал, что, несмотря на внешнее сходство с контрольными, «космические» растения отличались по структуре клеток, биохимическому составу и другим характеристикам.

    Дальнейшие эксперименты выявили проблему, которую не удавалось решить на протяжении десятилетий - растения в космосе не только не давали «потомства», то есть семян, но и вовсе отказывались цвести.

    Цветы в космосе — не цветы

    В 1979 году в Главном ботаническом саду АН СССР подготовили тюльпаны для выгонки на борту станции «Салют-6». Цветам оставалось лишь распуститься в космосе, но этого-то они и «не захотели» сделать по неизвестной причине. Почему — понять до сих пор не удалось. При этом в аналогичном эксперименте на Северном полюсе тюльпаны порадовали полярников дружным цветением.

    Хочется рассказать еще об одном занимательном эксперименте прошлого, когда ученые остановили выбор на тропических орхидеях, поскольку полагали, что эпифитный образ жизни орхидей может сделать их более устойчивыми к условиям космоса.

    Операция «Орхидея», хоть и вошла в историю космического растениеводства как одно из самых ярких событий, не завершилась успехом.

    Экзотические растения в космосе не зацвели, но зато продержались на «Салюте-6» почти полгода. Стоило орхидеям вернуться в оранжерею родного ботанического сада в Киеве, как они тут же покрылись цветами.

    Космический успех арабидопсиса

    Слава первого растения, зацветшего в космосе, выпала на долю не великолепной орхидеи, а невзрачного растения - арабидопсиса. Арабидопсис, он же резушка, - скромный род сорных растений из семейства Крестоцветные. Кстати, это еще и первое растение, геном которого был полностью расшифрован, правда случилось данное событие значительно позже.

    Прибывшей на станцию «Салют -6» Светлане Савицкой космонавты вручили небольшой букетик из цветов арабидопсиса. На Земле в стручках арабидопсиса обнаружили 200 семян. Этот опыт наконец-то опроверг мнение о невозможности прохождения растениями в невесомости всех стадий развития — от семени до семени.

    Фотография K.U.Leuven Campus Kortrijk

    Введение в Марсианские хроники

    Сегодняшние опыты с растениями в космосе, хотя и оставляют еще множество загадок, становятся все более успешными. Например, горох, выращиваемый на Международной космической станции, относится уже к третьему поколению космической флоры.

    По мнению многих исследователей, растения обладают восприятием, чувствами, памятью - уникальными свойствами, ничем в их сравнительно примитивном организме не обусловленными.

    Ученые полагают, что даже межпланетный перелет на Марс - давнюю мечту человечества - ряд растений в состоянии не только успешно пережить самим, но и помочь в этом космонавтам. При длительных космических полетах растения становятся не просто предметом эксперимента, они должны решать ряд задач, связанных с жизнеобеспечением экипажа корабля (вспомните слова Циолковского, сказанные чуть меньше столетия назад). И может быть то, что совершается сегодня, уже войдет в будущие «Марсианские хроники».

    Расшифровывая ДНК и до последней клетки «разбирая» строение живых организмов, ученые пока очень мало продвинулись в другой области, лежащей за гранью физического мира. По мнению многих исследователей, растения обладают восприятием, чувствами, памятью - уникальными свойствами, ничем в их сравнительно примитивном организме не обусловленными. И если мы не нашли души цветка внутри него, может быть ответ есть где-то там, во Вселенной?